

Simulating neutrino interaction events using SBN@PBC neutrino fluxes

F. Bramati, S. Dolan, L. Munteanu

CERN EP-NU group meeting

05/12/2024

ENUBET : the first monitored neutrino beam

Monitored neutrino beams are a novel technology aimed at measure the flux and flavour of neutrinos produced at the source at percent level.

ERC project focused on :

measure **positrons** from K_{e3} ($K^+ \rightarrow e^+ \pi^0 \nu_e$) decay by means of the instrumented decay tunnel $\Rightarrow \nu_e$ flux measurement As **CERN NP06/ENUBET experiment** extends at : measure **muons** from $K_{\mu\nu}$ ($K^+ \rightarrow \mu^+ \nu_{\mu}$) with the instrumented decay tunnel and from $\pi_{\mu\nu}$ ($\pi^+ \rightarrow \mu^+ \nu_{\mu}$) instrumenting the hadron dump as a range meter $\Rightarrow \nu_{\mu}$ flux measurement **Lepton monitoring** bypasses the main systematics : hadron production, beamline geometry and focusing, protons on target (POT).

The narrow-band off-axis technique

Energy measurement by neutrino tagging: the NuTag concept

DUNE

 $K^+ \rightarrow \mu^+ \nu_{\mu}$) B($K^+ \rightarrow \pi^0 e^+ \nu_e$)/B($K^+ \rightarrow \mu^+ \nu_{\mu}$) [NuTAG]

- · Unlike monitored neutrino beams, a **tagged neutrino beam** uniquely associate the neutrino with its accompanying particles in the beamline.
- The use of state-of-the-art silicon trackers is the core of the **NuTAG** concept:
 - Associate individually each neutrino interaction with its production mechanism

calorimeter

 $N(v_e) = N(K^+ \rightarrow \pi^0 e^+ v_e)$ = N(e^+) [ENUBET]

40m long decay tunnel →

- A **tagger** (pixel detectors) is installed in the beam line to track $\mathbf{\pi}$, **K** and $\mathbf{\mu}$
- Neutrino are reconstructed based on decay kinematics

Courtesy M. Perrin-Terrin

quadrupoles dipole π, Κ, L

٠

	Available	Max. Radiation	Max. Flux
NA62-GTK	since 2015	$10^{14} n_{eq}^{2}/cm^{2}$	2 MHz/mm ²
HL-LHC	before 2028	10 ¹⁶⁻¹⁷ n _{eq} /cm ²	10-100 MHz/mm ²

This technique is ideally suited for 2-body decays ($\pi_{\mu\nu}$, $K_{\mu\nu}$) to reconstruct the neutrino energy E_{ν} :

- **parent momentum** $p_{\pi/K}$ **:** tracking before and after a dipole
- **neutrino production angle \theta_{v}** (i.e. the interaction vertex in ProtoDUNE or WCTE)

NP06/ENUBET neutrino fluxes for the CERN site dependent implementation

- The neutrino fluxes are computed using the simulation of the instrumented decay tunnel (**G4TAG**) for the latest **SBN@PBC** transferline (**SBNv12.1**).
- The neutrino fluxes are obtained using G4TAG simulation for SBNv12.1 transferline (1057.2 MPOT).
- The neutrino flux is computed as the neutrinos crossing the front area of the neutrino detector.
- The neutrino detector is **ProtoDUNE**:
 - front-face area of 6 x 6 m²
 - fiducial mass of **500 ton**
 - located at a distance of 50 m from the tunnel exit

The **total pot statistic** expected to be collected is **4.5** • **10**¹⁹ **pot**.

Neutrino interactions are simulated with **GENIE** and output is flattened by **NUISANCE** :

 \rightarrow **flat trees** are easy to work with and with the same format for other generators.

The **GENIE tunes** used are AR23_20i_00_000 and G18_10a_00_000:

- the main difference is the size of the RES and the 2p2h model.

AR23 model is the **DUNE baseline model**, used for sensitivity studies and simulation.

The narrow band off-axis

The narrow band off-axis technique can provide an **"a priori" measurement of neutrino energy** for v_{μ} w/o relying on final-state particles, i.e. by exploiting two-body kinematics.

The neutrino flux is computed for 15 different circular rings with increasing radii, w/ a 20 cm radial window.

Eν

 $\sigma_{\scriptscriptstyle E\nu}$ / $E_{\scriptscriptstyle \nu}$

7

Flux averaged neutrino cross section measurments using NBOA

Since the incident neutrino energy is not known on an event-by-event basis, most modern neutrino cross-section measurements are reported as **flux-averaged cross sections**.

The average cross section σ is reported as the number of expected events N per total incident neutrino flux ϕ , number of target nucleons N_{tgts} and total protons on target (pot) exposure.

$$\langle \sigma \rangle_{\Phi} = \frac{N}{\Phi N_{tgts} N_{pot}}$$
 $N_{tgts} = \frac{M_{det}[g]}{A_{iso}[g/mol]} \cdot A \cdot N_A$

- Using the **narrow band off-axis** thin neutrino fluxes, flux averaged neutrino cross section can be extracted for each radial position with an "a priori" measurement of neutrino energy with precision spanning from 10-30% in DUNE roi.
- Since $\pi_{\mu\nu}$ and $K_{\mu\nu}$ peaks are well separated, flux averaged neutrino cross section can be performed using both peaks.
- Thanks to the **NuTag** concept the neutrino energy resolution can be pushed to **1%** using a tagged sample with reduced statistic.

Flux averaged neutrino cross section measurements using NBOA

The total pot statistic is 4.5 · 10¹⁹ pot.

First demonstration that NP06/ENUBET would accurately map the evolution of the neutrino energy with pretty fine granularity over the whole range of energies relevant for DUNE.

Flux averaged neutrino cross section measurements using NBOA

The **total pot statistic** is 1 · 10¹⁹ pot.

First demonstration that NP06/ENUBET would accurately map the evolution of the neutrino energy with pretty fine granularity over the whole range of energies relevant for DUNE.

Flux averaged cross section using NBOA + NuTag

Consider a **tagged** v_{μ} **sample** with **statistic of 10**⁴ v_{μ} **CC events** (rescaling bin contents and fluxes) and **energy resolution** expected to be **1%**.

Note that $10^4 v_{\mu}$ CC events is 0.8% ot the total v_{μ} CC statistic (~ $12 \cdot 10^5 v_{\mu}$ CC events with $4.5 \cdot 10^{19}$ pot).

double differential cross section for CC0π events (lepton kinematics)

double differential cross section for CC0π events (lepton kinematics) [cont'd]

Conclusion and next step

- The neutrino fluxes and expected rate were using the G4TAG for the latest **SBN@PBC** transferline (**SBNv12.1**).
- Neutrino interactions simulated by GENIE and NUISANCE using the NP06/ENUBET fluxes.
- Narrow band off axis:

•

•

•

•

•

- v_{μ} energy resolution spanning ~ 10 30 % for $\pi_{\mu\nu}$ for energies in range E_{ν} = [1, 3.3] GeV.
- v_{μ} energy resolution spanning ~ 7 14 % for $K_{\mu\nu}$ for energies in range E_{ν} = [5.2, 8] GeV.
- First demonstration of NBOA ability to map the evolution of neutrino energy with pretty fine granularity over the DUNE r.o.i.
- Next step : double differential cross section for ν_e and ν_μ
- Next step : use DUNE-PRISM concept to build virtual fluxes from linear combination of thin off-axis fluxes to fill the gap in the $\pi_{\mu\nu}$ and $K_{\mu\nu}$ separation region and even lower energies.

Backup

The ENUBET transfer line : the final design

The beamline is based on **static focusing** elements ("direct current"), i.e. **without** employing a **pulsed magnetic horn** :

- **slow extraction of primary protons** ⇒ full intensity continuously extracted in few seconds (~ 2 sec)
 - particle rate in the tunnel reduced at a sustainable level for detectors (< 100 kHz/cm²)
 - \sim static focusing elements : **dipoles** and **quadrupoles** \Rightarrow cost-effective and operationally more stable
- **short length** to minimize kaon decays \Rightarrow w/L = 20 m about 30% of K are lost, and K/ π abundance ratio drops by ~ 25%
- optimized **graphite target** (L = 70 cm, R = 3 cm)
- **tungsten foil** (5 cm) after target to screen e⁺background

v_e and v_μ flux and CC interaction rate @ 50 m from tunnel exit using ProtoDUNE

The neutrino detector is ProtoDUNE with a fiducial mass of **500 ton** and with front-face area of **6 x 6 m**².

.

The narrow band off-axis

The neutrino detector is ProtoDUNE with a fiducial mass of **500 ton** and with front-face area of **6 x 6 m**².

•

The narrow band off-axis : gaussian fit

The neutrino detector is ProtoDUNE with a fiducial mass of **500 ton** and with front-face area of **6 x 6 m**².

.

Eν

 $\sigma_{E\nu}$ / E_{ν}

20

ν_e and ν_μ flux and CC interaction rate @ 50 m from tunnel exit using WCTE

The neutrino detector is **WCTE** with a mass of **40 ton** and with central-area of **4 x 4 m**².

.

