Atmospheric Neutrinos in ATLAS

Joachim Kopp (CERN & JGU Mainz) EP-NU Group Meeting | 5 December 2024

first proposed by François Vanucci JK Lindner 2007 Wen Argüelles Kheirandish Murase 2023 Gosh Mukhopadhyay Mukhopadhyaya 2024

Basic Idea

ATLAS has

- a 2.9 kt hadronic calorimeter made of steel + plastic scintillator tiles ■ a decently sized neutrino target
 - an excellent muon system
 - a large geometric cross-section (~46 x 25 m²) for upward-going muons

v_µ Event Signatures

Downward going contained vertex events

TM

Upward going contained vertex events

v_e or v_τ could also leave a shower-like signal in the HCAL (but neglected in the literature so far)

Atmospheric Neutrino Spectrum

Atmospheric Neutrino Spectrum

Energy Threshold

- low energy threshold is crucial due to the steeply falling flux in <u>JK Lindner 2007</u>, a v_{μ} energy threshold of 1.5 GeV has been used (probably a somewhat optimistic estimate)
- Gosh Mukhopadhyay Mukhopadhyaya 2024 use 3 GeV instead (minimum energy required for a muon to cross the HCAL and leave a signal in the muon system)
- reality is probably somewhere in between
 - Higher threshold for contained events (which have to be able to leave the HCAL 0
 - Lower threshold for through-going muons (which only interact with the muon system) 0

Event Rates

JK Lindner 2007: **160 contained v_µ events** / 100 days of running **360 upward-going v_µ events** / 100 days of running

Gosh Mukhopadhyay Mukhopadhyaya 2024: contained events per ~1,400 days of running

Energy	$N_{\mu^{-}}$	N_{μ^+}	N_{μ^-}/N_{μ^+}	Category
$3 \le E_{\mu} \le 10 \text{ GeV}$	33	17	1.82	Only TM
$5 \le E_{\mu} \le 10 \text{ GeV}$	14	7	2.0	Only TM
$E_{\mu} > 10 \text{ GeV}$	30	15	2.0	TM & M
$E_{\mu} > 20 \text{ GeV}$	15	7	2.14	TM & M
Total: $E_{\mu} \geq 3 \text{ GeV}$	63	32	1.97	

Physics with Atmospheric Neutrinos in ATLAS

Supernova Neutrinos in ATLAS

besides the well-known O(10 MeV) flux, core-collapse supernovae are expected to yield high-energy ($\geq 100 \text{ GeV}$) neutrinos from cosmic rays accelerated by the outflowing matter

What about CMS?

less massive calorimeter is fewer contained events a lot of material between muon chambers in higher threshold Naïve expectation is therefore worse performance than ATLAS ... but never underestimate the ingenuity of the CMS collaboration

9