Latest Results and Status of the LUX-ZEPLIN Dark Matter

> Leah Wolf RHUL

LZ (LUX-ZEPLIN) Collaboration, 38 Institutions

Ф Ф

ΦΦ

BROWN

https://lz.lbl.gov/

250 scientists, engineers, and technical staff

LZ Collaboration Meeting

June 2024 at Brown University

- Black Hills State University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- King's College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Sydney
- University of Texas at Austin
- University of Wisconsin, Madison
- University of Zürich

What is LZ?

- Direct dark matter detector
- 1 Mile underground at the Sanford Underground Research Facility, South Dakota
- Liquid xenon target for detection of WIMPs

Weakly Interacting Massive Particle - WIMP!

- 1GeV 1TeV
- Interacts via weak force and gravity
 - $\circ \quad \mathsf{Hence} \to \mathsf{Dark}$
- Very stable doesn't decay on
 - cosmological timescales

Very difficult to detect

Dark Matter

When we look at the universe, it seems like there should be more matter than we can see

This phenomenon is what we're referring to when we discuss **Dark Matter**

$WIMPs \rightarrow A$ theory of dark matter

Galaxy curves

- Plot orbital velocity of galaxy stars/gas vs. distance from galaxy center
 - **Expected**: Velocity curve decreases with distance from centre
 - **Observed**: curve remains flat
- Luminous matter accounts for only ~10-20% required mass
- Must be more matter we can't see?
- \rightarrow Dark matter?

Bullet Cluster

- Bullet cluster
 - Two galaxy clusters collide
 - Gas from clusters collides and slows
- Gas is luminous → Emitting a lot of X-rays
- Mass can be mapped using gravitational lensing
- Gas makes up most of visible massnot galaxies
- Mass is not where it ~should~ be?
- Seen in many cluster collisions
- \rightarrow Dark matter?

Cosmic Microwave Background

- Radiation from the early universe
- Temperature fluctuations at different angular scales across the CMB

Current state of affairs..

- WIMPs fit cosmological data very well

 "WIMP miracle"
- Seemed like the perfect solution until.. We didn't find them

Limit curves

Set limits on maximum possible interaction rate for different WIMP masses

Gradient of discovery limit, $n = -(d \ln \sigma / d \ln N)^{-1}$

Previous

Current state of affairs..

- WIMPs fit cosmological data very well

 "WIMP miracle"
- Seemed like the perfect solution until.. We didn't find them
- Getting dangerously close to neutrino fog
 - WIMP signal becomes near indistinguishable from neutrino background
- Still plenty of parameter space!!

Back to LZ...

- Detector: Dual-phase liquid xenon time projection chamber (TPC)
- 7 tonne liquid xenon target
- gaseous xenon layer
- PMT arrays above and below

Used to characterise and veto background

Veto Detectors

- Outer Detector (**OD**)
 - Acrylic tanks filled with Gadolinium loaded liquid scintillator
 - OD PMTs
- Skin detector
 - Thin layer of liquid xenon outside TPC
 - Additional PMT array
- OD → Tags neutron events
- Skin → Tags gamma background events

Interaction in the TPC

- Incoming particle produces electron/nuclear recoil
- Two signals produced
 - Scintillation light (S1)
 - Ionisation electrons (S2)
- Electrons drifted to gaseous xenon
 - S2 signal produced by ionisation of electrons
- 3D reconstruction
 - X,Y from PMT hit pattern
 - Z from time electrons take to drift

Interaction in the TPC

- S2 larger than S1
- Ratio of S1 size to S2 size used to distinguish **ER** vs **NR** events
 - **ER** Electron recoil
 - NR Nuclear Recoil
 - Larger relative S2 for **ER** events
 - Smaller relative S2 for NR events
- Most WIMP events expected to be **NR**, most background **ER**
- Xenon is particularly good for ER/NR distinction

Analysis pipeline - Data

Analysis pipeline - Data

- "Fiducial volume" cut
- Keep events only from volume with lowest background from detector materials
- Roughly the centre of the detector
- 5.5 tonne fiducial volume
- Described more on slide 28

Analysis pipeline – Data

- Live time exclusions
 - High rate activity
 - Detector instability
- Veto cuts
 - Remove events with veto detector coincidence
- Physics cuts
 - Event topology studied to cut events likely to be background

Analysis pipeline - Data

• Region of interest (ROI) cut

Reconstruction

 Focus analysis only on region of parameter space that is WIMP-y

Analysis pipeline - Data

Likelihood Function

How likely is a certain observed dataset given a certain signal strength and set of background strengths?

How we get the PDF's

- Backgrounds & signal modelled in order to produce templates
 - Finely grained histograms in cS1, log₁₀(cS2) space
 - Gives differential event rates
 - Filled by Monte-Carlo simulations
- Template for each source

$$\sum_{e} \ln \left(\mu f_{\mu}(cS1, cS2) + \sum_{j} \nu_{j} f_{j}(cS1, cS2) \right)$$

How do we get the templates?

Backgrounds

Backgrounds

Expected makeup:

- ~ 60% Pb-214
- Other ER
 - Solar neutrinos (rate known from previous measurements)
 - \circ Other β 's
 - Material γ's
- 0.18 NR CEvNS events
- Small but problematic:
 - \circ ¹²⁴Xe \rightarrow leaks into NR space
 - $\circ \quad \mbox{Accidentals} \rightarrow \mbox{Appear in} \\ \mbox{WIMP region}$

Xe - Double Electron Capture

- ¹²⁴Xe
 - Natural abundance 0.095%
- Double electron capture
 - Recombination of excitons & ionisation electrons
 - Floating charge suppression ratio for LL-capture
 - Higher charge suppression droops into WIMP region
- \rightarrow Shape varying parameter
 - WS2024 ratio: QLL/Q β = 0.70 ± 0.04
- First analysis to incorporate this!

29

Accidentals

- Unrelated S1 & S2 pulses mistakenly paired as event during reconstruction
- Events with unphysical drift time cut
 - Population used to predict total accidental rate
- Shape constructed by applying all analysis cuts to manufactured accidental events
- 2.8 ± 0.6 accidental events expected in WS2024
- Low rate, but prominent in WIMP region

Wall

- U-238 & Th-232 traces in detector materials
 - Gammas from decay chains produce ER background
 - **Neutrons** from spontaneous fission produce **NR** background
- Fiducial Volume cut reduces wall event rate to <0.01 in WS2024
- Cut varies azimuthally to account for e-field irregularity

Pb214/Pb212 from Radon decay chains

- Radon contamination in the liquid xenon
 - Originating from detector materials (i.e., wall) and accumulated dust
 - Strict cleanliness during construction to minimise contamination
- $^{220}Rn \rightarrow ^{212}Pb$
- $^{222}Rn \rightarrow ^{214}Pb$

Radon tagging

- WS2024 data collected in two states:
 - High mixing uniform distribution of Rn and injected sources
 - Low mixing laminar-like flow, creates convective cells
- Flow mapped using coincident ²²²Rn-²¹⁸Po
 - \rightarrow ²¹⁴Pb efficiently tagged

Totally novel!!

Mixing states

LZ Preliminary

Combined likelihood

Analysis pipeline - Model

Detector response model

- Noble Element Simulation Technique (NEST)
 - Predicts light and charge yield
 - Understand ER and NR bands
 - Widely used across DM experiments
 - Calibration data used to tune NEST parameters to define ER/NR bands
- **ER band** calibrated by injecting tritiated methane (homogeneous β source)
- NR band calibrated with DD neutron generator

Analysis pipeline - Model

Dataset

Back to stats

Profile Likelihood Ratio

Test statistic:

Scalar function of the data: profile likelihood ratio. Function of a given hypothesised signal strength, and the data (via maximum likelihood fits). Larger value indicates disagreement with hypothesised μ

Setting a limit

p-value:

Under the assumption of the signal strength being tested, what is the probability to find a test statistic at least as high as that observed?

We don't see signal events: disagreement with the data when signal too high: upper limit

We see signal events: disagreement with the data when signal too high *or* too low: "lift-off"

Discovery

• Slightly different test statistic definition. Larger value indicates more statistically significant signal

$$q_0 = -2\ln\begin{cases} \frac{L(0,\hat{\vec{\nu}})}{L(\hat{\mu},\hat{\vec{\nu}})} & \hat{\mu} > 0\\ 0 & \hat{\mu} \le 0 \end{cases}$$

Test statistic:

Larger values indicates disagreement with the background-only hypothesis; used to quantify discovery significance

Goodness of Fit

Data counts per bin
Best fit model counts per bin

Baker–Cousins χ^2 test statistic for Poisson counts within bins.

p-values calculated non-asymptotically via toy MCs

We take a p-value > 5% to indicate a sufficiently "good" fit

Test statistic » Roughly a measure of how well the model fits the observed data

Goodness of Fit

Accidentals

--- $40 \text{ GeV}/c^2 \text{ WIMP}$

---- ⁸B

Data

Total Bkg

²¹⁴Pb Bs

Other ER

- ¹²⁷Xe + ¹²⁵Xe EC

Bias mitigation?

Bias mitigation

- Very helpful in our background model analysis to be able to *see* the data
 - Still needed to mitigate bias
- Salted data
 - Fake WIMP-like events scattered through data at WIMP-like rate
 - Analysts unaware of which events are salt
 - Events constructed using old calibration data
- Salt events removed once inference inputs frozen

Results

WS2024 data

- WS2024 data taken over ~1.5 years
- 3.3 tonne-year exposure
 - 220 live days
 - 5.5 t active volume
- **1221 events** remained after salt removed
 - 8 salt events total
 - 1 salt event removed by analysis cuts

Results paper available here

Data components

Fit results

Source	Pre-fit Constraint	Fit Result
214 Pb β s	743 ± 88	733 ± 34
$^{212}\mathrm{Pb}$ + $^{218}\mathrm{Po}\ \beta\mathrm{s}$	62.7 ± 7.5	63.7 ± 7.4
85 Kr + 39 Ar β s + det. γ s	162 ± 22	161 ± 21
Tritium+ ¹⁴ C β s	58.3 ± 3.3	59.7 ± 3.3
Solar ν ER	102 ± 6	102 ± 6
127 Xe + 125 Xe EC	3.2 ± 0.6	2.7 ± 0.6
¹²⁴ Xe DEC	19.4 ± 3.9	21.4 ± 3.6
136 Xe $2\nu\beta\beta$	55.6 ± 8.3	55.8 ± 8.2
$^{8}\mathrm{B}+hep \ \nu \ \mathrm{NR}$	0.06 ± 0.01	0.06 ± 0.01
Atm. ν NR	0.12 ± 0.02	0.12 ± 0.02
Accidentals	2.8 ± 0.6	2.6 ± 0.6
Detector neutrons	-	$0.0^{+0.2}$
$40 \ { m GeV}/c^2 \ { m WIMP}$	-	$0.0^{+0.6}$
Total	1210 ± 91	1203 ± 42

Veto efficiency \rightarrow 92 ± 4%

 $QLL/Q\beta = 0.70 \pm 0.04$

Limit curve

- World leading limit for all tested masses
- Unconstrained limit lower under-fluctuation

 \rightarrow Limit constrained to 1 sigma below median expected upper limit

What's next?

The future of LZ

- Continuing to take data
 - Goal of 1000 livedays
 - Data taking until 2028
 - Continued salting
- Future analyses with existing data
 - Low mass WIMPs
 - Boron-8 neutrinos
 - Neutrinoless double beta decay
- Future WIMP searches!
- Working toward XLZD..

XLZD: The next generation

- XENON, LZ, DARWIN super-collaboration
- Planned 40-100 tonnes Xenon TPC
- Looking below the neutrino fog
- Data taking in 2030's

If WIMPs exist above the systematic limit of astrophysical neutrinos, **XLZD** will observe them.

Conclusions

- World's most sensitive WIMP direct detection experiment with combined total exposure of 4.2 tonne-year
- World leading interaction limit for all WIMP masses tested!
- Novel background modelling
 - First observation of suppressed charge yield from LL-shell DEC of 124Xe
 - Flow based radon tagging
- Onwards to future LZ searches and XLZD!

Thanks! Questions?