TAPERING AND ENERGY COMPENSATION

Delphine Domange, Cédric Hernalsteens

FCC-ee Accelerator Design Meeting

2024-11-27

Tapering and energy compensation

- Synchrotron radiation energy losses over one turn is significant, even at the z-pole energy (45.6 GeV) and becomes critical at the ttbar energy
 - Rf phase (energy compensation) and magnet relative strengths (tapering) must be **self-consistently** adjusted
 - Energy loss and energy compensation (gain from cavities) impacts tapering and vice-versa
 - Need to find a fixed-point in an extended parameter space
- Tapering schemes must be devised to accomadate
 - Practical considerations: powering scheme, cabling, cost
 - Beam dynamics considerations: orbit shift, beta-beating, chromatic correction, dynamical and momentum apertures
 - Ideal tapering: each element is adjusted to match exactly the beam momentum at that location
 - Realistic tapering: magnets are adjusted in groups (mean rigidity) within magnet families

Outline

- Powering schemes and considered tapering schemes
- Self-consistent algorithm to find a fixed-point in the rf phase / tapering / closed-orbit correction space
 - Present implementation in xsuite
 - Required extensions
 - Implementation
- Results for multiple tapering schemes
 - ttbar
 - Z

Powering schemes for the arc magnets

Arc dipole

- Twin aperture
- 2840 magnets
- 2 circuits per arc
- 16 circuits in total

Arc quadrupole

- Twin aperture
- 2840 magnets
- Half-arc powering
- 32 circuits (16 FQ + 16 DQ)

Arc sextupole

- Single aperture
- 600 magnets at Z
- 2336 magnets at tt
- Family powering
- 584 circuits (292 FS + 292 DS) (GHC lattice)

All other magnets considered individually powered in this study.

Tapering schemes

	Tapering scheme	Dipoles	Quadrupoles	Sextupoles
	D#_Q#_S#_M#	Individual	Individual	Individual
	D8_Q0_SC_M#	Arc 8	No tapering	Circuit 2 x 292
	D8_Q8_SC_M#		Arc 2 x 8	
	D8_Q16_SC_M#		Half arc 2 x 16	
	D16_Q0_SC_M#	Half arc 16	No tapering	
	D16_Q8_SC_M#		Arc 2 x 8	
	D16_Q16_SC_M#		Half arc 2 x 16	
	D32_Q0_SC_M#		No tapering	
	D32_Q8_SC_M#	Quarter arc 32	Arc 2 x 8	
	D32_Q16_SC_M#		Half arc 2 x 16	
	D64_Q0_SC_M#	Eigth arc 64	No tapering	
	D64_Q8_SC_M#		Arc 2 x 8	
	D64_Q16_SC_M#		Half arc 2 x 16	

Naming convention:

DX_QY_SZ_MW

X: number of dipole tapering families

Y: number of quadrupole tapering families

Z: number of sextupole tapering families

W: number of tapering families for other magnets

#: individually tapered

0: no tapering applied

Self-consistent tapering algorithm

Current implementation

FCC

- Limited to ideal tapering
- Assumes that an initial closed-orbit can be found
- Self-consistency implied by the ideal tapering, no closed-orbit search (initial guess without synchrotron radiation is used and tracked throughout)
- Improvements for self-consistent grouped tapering
 - Must rely on closed-orbit search
 - If closed-orbit not available at the start, "SR threading" is needed
 - Takes tapering groups as input
 - Indicates what to do with the groups: no tapering, ideal tapering, mean rigidity tapering, etc.
 - Perform closed-orbit correction at the groups boundaries (crucial for the straight sections, also crucial at boundaries in the arcs see later)

Implementation in xsuite

- Relies on usual 6D closed-orbit search
- If no closed-orbit can be found without tapering
 - Perform "threading": track through single element, obtain energy loss, taper the element, re-start tracking (leap-frog), after a full turn re-phase the cavities to compensate for energy loop; iterate as required
- Tapering
 - Find closed-orbit
 - Taper elements
 - Perform closed-orbit correction
 - Re-phase rf
 - Iterate until fixed-point found

Reference with individual tapering

• Closed orbit ~ $10^{-9} m$

- ~ 5.5% of energy loss via SR
- Reference value for dispersion: 0.1 m

Impact of the orbit correction

- · Reduction of the orbit oscillations
 - · Cancelled at the IP
- · Better symmetry along the machine

Impact of the quadrupoles tapering

- · Relatively limited on the closed orbit
- Larger impact on the tune shift

D16_Q8_SC_M#_OC16

- Closed orbit ~ $500 \ \mu m$
- Very large beta beating up to 150%
- Tune shift 10^{-2}
- Large dispersion shift

D64_Q16_SC_M#_OC16

- Closed orbit ~ 100 μm
- Acceptable beta beating <20%
- Tune shift 10⁻³
- Small dispersion beating

Closed-orbit correction performed selfconsistently in the fixed-point search. Do we need more? User-provided function or matching routine to selfconsistently rematch tune, optics, etc. ?

Results – Z-pole energy

Reference with individual tapering

• Closed orbit ~ $10^{-11} m$

- ~ 0.1% of energy loss via SR
- Reference value for dispersion: 0.5 m

Results – Z-pole energy

D8_Q8_SC_M#_OC8

- Closed orbit ~ $50 \ \mu m$
- Beta beating < 3%
- Tune shift 10⁻³
- Small dispersion shift

Results – Z-pole energy

D64_Q16_SC_M#_OC16

- Closed orbit ~ $10 \ \mu m$
- Beta beating < 0.2%
- Tune shift 10⁻⁴

○ FCC

• Very small dispersion shift

Results comparison

Z-pole energy

ttbar energy

Thank you for your attention.

○ FCC

17