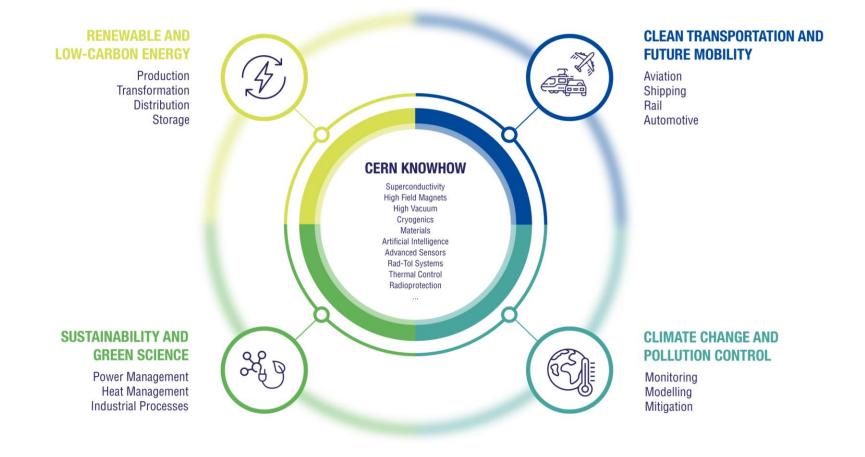


Inputs to CERN Environmental Report 2023-24

Enrico Chesta IPT/KT December 2024 **Reminder:**


Inputs to CERN Environmental Report 2021-22

Highlight 1: CERN/KT preliminary strategy on Environmental Applications defined in 2021

CERN

Enrico Chesta | KT Inputs to CERN Environmental Report 2021-22

Highlight 2: examples of projects signed in 2021-22 and under implementation in the 4 areas of focus

RENEWABLE AND LOW-CARBON ENERGY

CLEAN TRANSPORTATION

AND FUTURE MOBILITY

CLIMATE CHANGE AND

POLLUTION CONTROL

Helping a company in Spain (Applus+) to develop cryogenic testing facilities to support the development of systems for green hydrogen storage and transportation

Supporting civil aviation (Airbus) to assess the feasibility and interest of using superconducting power distribution systems in future electric/hybrid airplanes

Collaborating with the European Space Agency (ESA) to develop Artificial Intelligence algorithms to analyse Earth Observation images for climate monitoring

Partnering with industry (ABB) to improve energy efficiency of CERN cooling and ventilation infrastructure by up to 15% using smart sensors and digital twins

SUSTAINABILITY AND **GREEN SCIENCE**

Highlight 3: CIPEA (CERN Innovation Programme on Environmental Applications) launch and results in 2022

In March 2022, CERN launched the CIPEA programme to encourage CERN experts to come up with new ideas for environmental applications.

In June 2022, the CIPEA Innovation Day welcomed 15 innovative project proposals, such as:

- Accelerator systems for improving clean-techs production and reducing polluting emissions;
- Vacuum and RF technologies for renewable energy largescale distribution and new industrial heating;
- · Machine-learning algorithms for climate modelling;
- Innovative systems for reducing greenhouse gas emissions at CERN and beyond.


In September 2022, 7 CIPEA projects were selected to receive support from the KT Fund

Inputs to CERN Environmental Report 2023-24

Inputs to CERN Environmental Report 2023-24

Identify and develop CERN's

technologies that may contribute

CIPEA – Concept Evolution

CIPEA today is a label for all CERN projects (supported by KT) aiming at achieving positive environmental impact beyond CERN (global level)

Currently counting 30 projects in total - Classification

- Origin:
 - 10 issued from internal proposals
 - 20 issued from external requests
- Funding:
 - 9 supported by the KT Fund
 (out of which 4 supported also by external funding)
 - 10 supported only via external funding (companies)
 - 2 supported by external public funding (EU, ESA)
 - 9 currently in negotiation with external companies

- Key areas distribution:
 - Renewable and Low Carbon Energy: 15
 - Clean Transportation and Future Mobility: 6
 - Climate Change and Pollution Control: 5
 - Sustainability and Green Science: 4
 - All subcategories covered
- **PRL (Project Readiness Level)**: Classification in 6 different levels see next slide

CIPEA – Project Readiness Levels

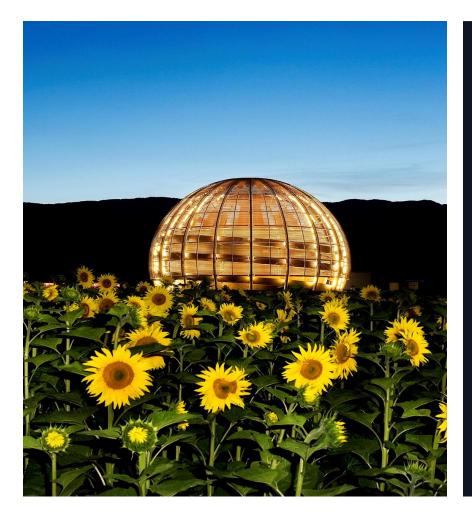
e p k S T	Projects in exploration phase Kobold SMC Thea Energy 	early definition phase Proxima Fusion UKAEA	Projects in advanced definition phase Statnett Cryotank Sohyytech	Projects in early implementation phase ENI META Gauss Fusion Transmutex UTMOST CLEEN / Atlas Copco WebEnergy EcoChiller Edge SpAlce	Projects in advanced implementation phase SCALE / Airbus UpNext LH2 tanker / GTT IVAC-RED / SuperNode Steels for tokamaks / Rolf Kind MagWatts / SolidWatts ALPHA / Lightricity VULCAN / DAES SF6-free circulator / AFT	Projects nearing completion EMP2 MotorSense / ABB LH2 testing / Applus QUAI4EO
	RL 1 ernal partner	PRL 2 2- Negotiations with	PRL 3 3- Draft collaboratio	PRL 4	PRL 5	PRL 6
and CERN expertise/ technology identified		external partner initiated or KT Fund allocated			0.11	6- Consolidated results available

CIPEA Projects in Environmental Key Areas

With sub-categories tentative distribution

Knowledge Transfer Accelerating Innovation

CIPEA - Poles of Competence in Environmental Applications


(A)	Compact Magnetic Confinement Fusion Energy Systems	SC Lines for On-board and Grid Power Distribution		
	Accelerator Driven and Advanced Nuclear Reactors	Liquid Hydrogen Storage and Handling Systems		
98 D	Engineering Systems Optimized for Low Emissions and Energy Efficiency	Instruments and Facilities for Remote and In-situ Environmental Monitoring		
of g	Fast, Low-power Computing Techniques based on Al	AI Platforms for Global Phenomena Modelling and Climate Simulations		

CIPEA On-going Projects Examples

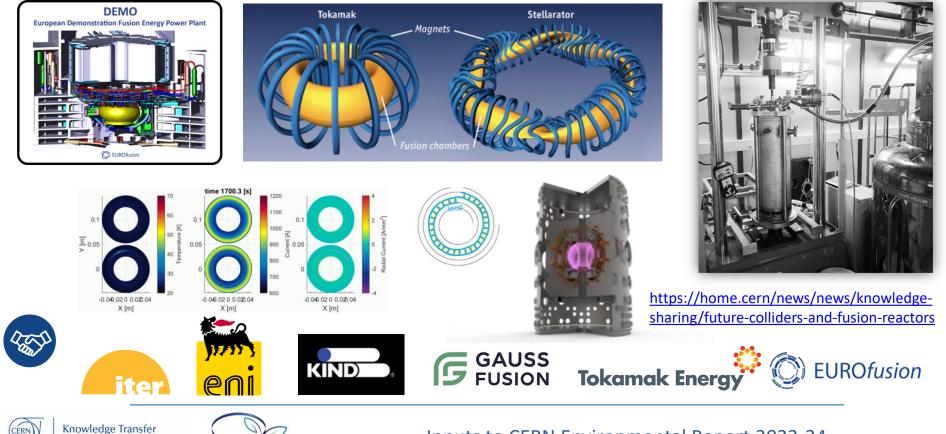
CIPEA CERN Innovation Programme on Environmental Applications

RENEWABLE AND LOW-CARBON ENERGY

Production

Fusion Systems

Magnetic confinement fusion devices – System design and components testing



Supporting system level R&D and component testing for fusion systems

- Design, modelling and testing of critical components for magnetic confinement fusion devices
- Assessing the mechanical properties of steels for tokamaks casing at cryogenic temperatures

Impact: Accelerating availability of unlimited affordable low-carbon fusion energy

Knowledge Transfer Accelerating Innovation

Distribution

Ð

Cryostats for SC powerlines

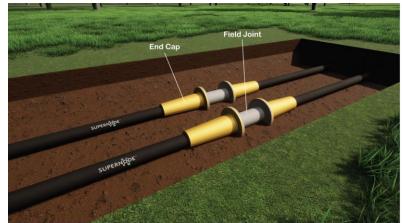
IVAC-RED: Insulation VACuum of superconducting cables for Renewable Energy Distribution

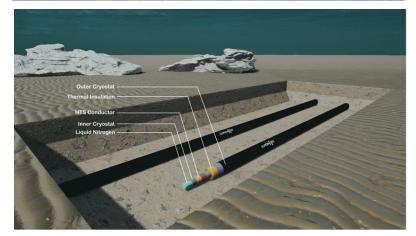
Knowledge Transfer Accelerating Innovation

Vacuum compatibility of materials for long-range superconducting cables

- Permeability and outgassing measurements of candidate materials for the insulating system of superconducting cables
- Development of dedicated test rig

Impact: Minimizing losses, cost and footprint of long-range renewable energy power transmission, for both terrestrial and submarine applications





https://home.web.cern.ch/news/news/knowledge-sharing/supernodeand-cern-collaborate-new-solutions-renewable-energy

Aviation

"- mmm

HTS for Electric Planes

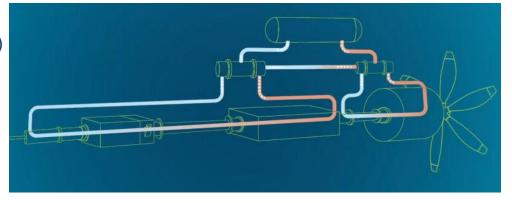
SCALE: Super-Conductors for Aviation with Low Emissions

Knowledge Transfer Accelerating Innovation

Inputs to CERN Environmental Report 2023-24

P AIRE

SCALE: Demonstration of SC power distribution systems for future LH₂ planes


- SCALE aims to promote the adaptation and adoption of superconducting technologies in airborne electrical distribution systems
- The demonstrator consists of a DC link (cable and cryostat) with two current leads. The cooling system is based on gaseous helium.

Impact: Support critical decisions on advanced technologies for clean aviation with the ambition to:

- Halve weight and volume of components
- Reduce voltage to below 500V
- Increase system efficiency (+5-10%)

https://kt.cern/news/press-release/knowledge-sharing/cern-and-airbuspartnership-future-clean-aviation

Joint press release

Knowledge Transfer

Accelerating Innovation

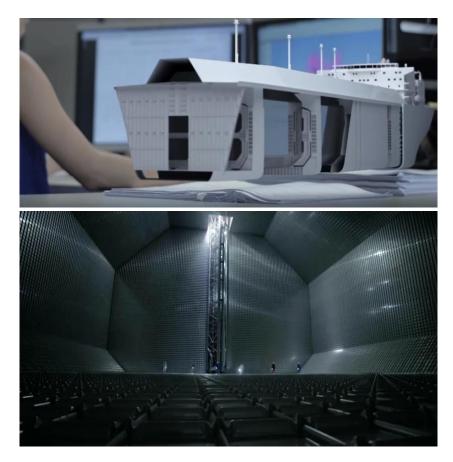
Shipping

Liquid Hydrogen storage

Development of large LH₂ tanks for maritime transportation

Supporting the development of tanks for long-range maritime transport of LH₂

Project to help GTT adapting procedures/designs for LNG to innovative LH2 tanks related to:


- Materials specifications and quality control
- Welding procedures to ensure leak-tightness
- Materials test for vacuum insulation layer

Impact: Develop technologies to enable the maritime transport of liquid hydrogen to connect producers and consumers across the world enabling a green hydrogen economy.

CERN and GTT enabling liquid hydrogen maritime transportation - Video

Knowledge Transfer Accelerating Innovation

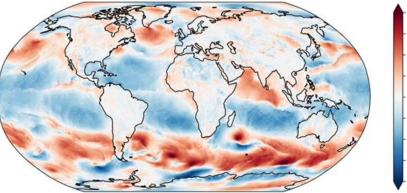
CLIMATE CHANGE AND POLLUTION CONTROL

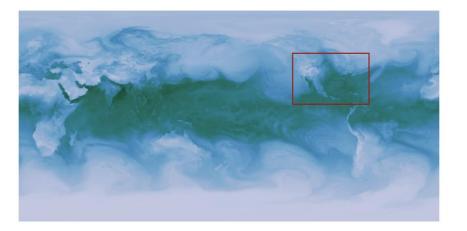
Modelling

Environmental Modelling and Prediction Platform

Environmental Modelling and Prediction Platform

- Development of a proof-of-concept Machine Learning digital twin of the dynamics of the atmosphere
- Trained on hourly data over 40 years from Copernicus (Wind, Temperature, Humidity & Precipitation)




Impact: Very robust predictions that can improve traditional numerical weather modelling, specifically:

- Nowcasting (weather forecast up to 6h)
- ➢ Downscaling of (extreme) weather phenomena (32km → 6km)
- Correction of precipitation measurements bias

Knowledge Transfer Accelerating Innovation

Mitigation

UTMOST CLEEN / CLEER

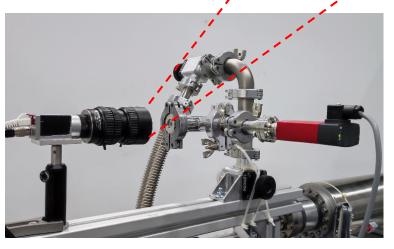
Electron Beam Flue Gas Treatment System

Inputs to CERN Environmental Report 2023-24

- 1 B

Development of Electron-Beam-Flue Gas-Treatment

UTMOST CLEEN: Ultra-Thin Membrane Overlay STacks to Channel Low Energy ElectroNs to Atmosphere Development of a compact and durable Electron Beam Flue Gas Treatment (EBFGT) technology


- Phase 1: UTMOST CLEEN: Development of key components such as ultrathin beam windows
- Phase 2: UTMOST CLEER: Development of Demonstrator System for specific application

Impact: Significant cut in greenhouse gas emissions from hard-toabate transportation systems (ships) and industries (semiconductors) through pre-release exhaust gas purification.

- Reduce SOx emission by up to 95%
- Reduce NOx emission by up to 80%

Strategic Partnership Negotiation On-going

SUSTAINABILITY AND GREEN SCIENCE

Industrial processes -Emissions management

2E 9

SF6-free RF circulator for photo injectors

Development of a vacuum-compatible high-power waveguide circulator

Knowledge Transfer Accelerating Innovation

SF6-free RF circulator for photo injectors

Development of a vacuum-compatible high-power waveguide circulator operable without SF6

- > Performing outgassing and brazing studies to identify suitable vacuum-compatible ferrite
- > Testing existing circulators with eco-friendly alternative gases

Impact: Eliminate need of SF6 gas (Global warming potential: 23'500) in all accelerator applications requiring RF circulators (including medical hadron facilities).

CERN's need: 3 units.

Potential benefits also for circuit breakers industry.

AFT Microwave

SUSTAINABILITY AND GREEN SCIENCE

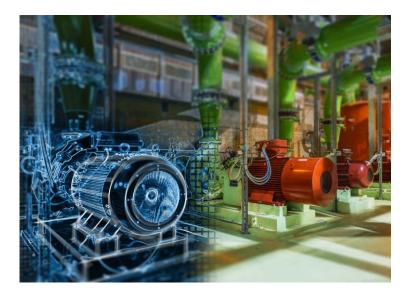
Industrial processes -Power management

MotorSENSE

Reducing electricity consumption in cooling and ventilation using smart sensors and digital twins

Energy savings in driven pumps and fans using smart sensors and digital twins

Reducing electricity consumption in cooling and ventilation using smart sensors and digital twins


- Selection of >800 low-voltage motors and installation of >100 smart sensors
- Measurement of output power, speed, vibration levels and estimation of operating efficiency
- Improvement and optimisation of smart sensors algorithms
- Development of digital twins
- Recommendations for energy saving

Impact: Identification of 17.4% energy-saving opportunities at CERN (up to 31 GWh). Same approach can be applied to any infrastructure with similar cooling and ventilation requirements.

https://home.cern/news/news/knowledge-sharing/abb-and-cern-identify-174-energy-saving-opportunity-laboratorys-cooling

Knowledge Transfer Accelerating Innovation

Thanks for your attention!

Enrico Chesta enrico.chesta@cern.ch www.cern.ch/kt

'_4

CIPEA / CERN Innovation Programme on Environmental Applications

Se P

