

SY-RF-BR

LHC - Beam Wire Scanner Impedance Study Update

18/02/2025

H. Bursali, C. Vollinger, W. Andreazza, C. Pasquino, H. Sullivan

96th IWG Meeting

Outline

- Legacy Model
- Improvements on the Model
 - Follow up
 - RF Absorber Usage
 - Studied Models
 - Updated Model
 - Previous vs Updated Model
- Beam-induced RF Power Loss
- Conclusion & Future Work

Wake impedance Z [Magnitude]

2

Follow up

For more info: <u>'LHC BWS Impedance Study', 93rd IWG Meeting</u>

RF Absorber Usage

Wake impedance Z [Magnitude]

96th IWG Meeting

Studied Models

<u>RF absorbers with different lengths on bottom chamber</u>

5

Models with different absorber configurations

96th IWG Meeting

Updated Model

<u>RF Absorber Locations</u>

RF Absorber and Panel Locations

Previous vs Updated Model

Wake impedance Z [Magnitude]

96th IWG Meeting

Remark (1)

Current Design

<u>Current Design + Absorbers on the middle panel</u>

There will be wire with copper track on the card. -> Loop!

Remark (2)

Beam-Induced RF Power Loss

Beam Induced Heating Computation code – BIHC

Conclusion & Future Work

- The BWS model is equipped with RF absorbers both in the lower and upper chambers. All the peaks in the previous model (presented in 93rd IWG meeting) has mitigated.
- The panels are updated for better mechanical assembly and RF contact.
- Calculated beam-induced RF power loss is ~5 W for q-Gaussian beam distribution with 1 ns bunch length and 2.2e11 p/b intensity.
- Integration model and transverse impedance simulations will be performed.

Previous Model

<u>Updated Model</u>

SY-RF-BR

Thanks for your attention!

Special thanks to Leonardo Sito for the help on the BIHC code.

Backup Slides

BWS Model

Mechanical Model

Simplified CST Model

BWS Model - Dimensions

BWS Legacy Model

BWS Model Trial with Wire (1)

CST Model with Wire & Feedtrough

Front View

BWS Model Trial with Wire (2)

<u>Mode #1 -> 71 MHz</u>

BWS Model Trial with Wire (3)

<u>Mode #5 -> 532 MHz</u>

Models with Absorbers at Bottom Chamber (1)

RF absorber -> 50 Ω NEG coated ceramic (5 mm thickness)

Models with Absorbers at Bottom Chamber (2)

Models with Absorbers at Bottom Chamber (3)

Absorber Width Change

Modified Bottom Chamber (1)

Impedance responses of modified model with different absorbers

Model with NEG coated absorbers

Model with ferrites

Model with combined absorbers

50 Ω NEG coated ceramic (macor)

50 Ω NEG coated ceramic (macor)

Ferrites (TT2-111 R)

Ferrites (TT2-111 R)

Modified Bottom Chamber (2)

Impedance responses of modified model with different absorbers

Updated Model

