Expected Contributions to the Taskforce for CE Cost Estimation

F. Sorrentino

Goal of the task force

- Produce a detector layout as input for local teams
 - Review & update triangle layout
 - Review & update 2L layout
- Compatible with
 - reasonable cost of civil infrastructure
 - science goals
 - reasonable technical risk
 - reasonable flexibility
- Identify requests to civil infrastructure preliminary design in view of further design steps
- Time frame: 3÷4 months
- Output to be reviewed by external committee TBD

Coarse rationale

- Identify major offenders on infrastructure costing
- Identify options on detector layout to prevent infrastructure cost to explode
- Search for possible options that might improve cost without sacrifice of performance
 - if needed, consider technical solutions with lower technology readiness than baseline
- Not an optimization
 - infrastructure cost cannot be precisely predicted without civil engineer design study
 - uncertainty in preliminary costing sets the target to options
 - discard options to bring minor cost reduction with technical risk
- Output document for each of the 2 geometries
 - detector layout including flexibility envelope
 - risk analysis on associated technical solutions
 - coarse analysis of financial risk

Rationale

- 1. Review baseline design and current options on triangle and L optical layout
- 2. Classify baseline design and current options for VAC, SUSP, CRYO
- 3. Identify constraints on optical layout from VAC, SUSP, CRYO (and viceversa)
- 4. Identify most critical parameters for CE costing to drive choice of design options
- 5. Define two sets of optical configurations
 - $^{\bigcirc}$ $\,$ using baseline design for VAC, SUSP, CRYO $\,$
 - using options for VAC, SUSP, CRYO
 - include first principle cheap option(s)
- 6. Generate corresponding baseline and optional detector layouts
 - run consistent estimate of margins
- 7. Coarse evaluation of layout options on CE cost
- 8. Run a simplified risk analysis by options classification, e.g.:
 - a) performance risk
 - b) technical risk (technology readiness level)
 - C) design flexibility
 - d) financial risk
- 11. Generate parametrized detector layout based on classified options, according to risk analysis

Civil infrastructure cost breakdown estimation

- Needed to drive instrument configuration changes
 - assuming dominant cost will be given by civil infrastructure
 - instrument configuration will be changed according to the identification of most critical elements for cost of civil infrastructure
- Requires two sets of criteria
 - Derive coarse civil infrastructure layout from detector layout
 - Coarse cost estimate of individual elements of civil infrastructure