

Hadronic Showers in Geant4 11.3.ref00

G. Folger, D. Konstantinov, A. Ribon CERN EP-SFT

CERN EP-SFT Geant4 meeting, 10 December 2024

Fixed reproducibility violation

- In 11.3.cand01, found one reproducibility violation in QGSP_BIC_HP_EMZ
 - Rare, seen in 11.3.cand01 for the first time, but present in Geant4 since version 10.2
 - In the class *G4UAtomicDeexcitation*, there is a *std::vector<int> vacancyArray* which, in rare cases, can keep memory of previous events, therefore breaking reproducibility.
 - The problem arises in the method *G4UAtomicDeexcitation::GenerateParticles* when there is an early exit by the condition:
 if (*Z* < 6 || *Z* > 104) *return;* and the solution is to clear the vector at the beginning of the method
 - (or, equivalently, in the above if-statement, before returning)
 - The fix was included in 11.3 a few days before the release. It should be applied to patches of previous versions as well, in particular 11.1 and 11.2

Note : during this debugging, done together with Mihaly, we have realised that in QGSP_BIC_HP instead of EM Opt0, the EM Opt4 (_EMZ) is silently and confusingly forced ! This was introduced in Geant4 10.5, in the following 3 physics lists: QGSP_BIC_HP, QGSP_BIC_HPT, QGSP_BIC_AllHP Pion- showers:

G4 11.3 FTFP_BERT G4 11.2.p02 FTFP_BERT

G4 11.3 QGSP_BERT G4 11.2.p02 QGSP_BERT

Note : conventional Birks treatment (easier and no experimental h/e to fit !)

Energy Response

Energy Width

5

Energy Resolution

6

Longitudinal Shape

Lateral Shape

Hadronic showers

- For nearly all physics lists, hadronic showers in G4 11.3 have
 - \sim 1-2% higher energy response and
 - ~ 5% narrower lateral showers

than those of G4 11.2

- Due to the improvement in the angular emission of ≥ 4 bodies in BERT, reducing the differences between this model and FTFP
- QGSP_BERT showers with respect to FTFP_BERT ones in G4 11.3 :
 - ~ 1-2% higher energy response
 - ~ 10% wider (*i.e.* less optimistic) energy resolution
 - ~ 5% longer showers
 - $\sim 4\%$ narrower showers