2024 Status report of the GBAR experiment

Pauline Comini CEA-Irfu, Université Paris-Saclay

 \bigcirc

0

on behalf of the GBAR Collaboration

Report on 2024 activities: positrons

G B A R

Report on 2024 activities: positrons

Confinement of more than 5.10^6 oPs in a tubular target Out of 7.10^7 e⁺ on target area.

Thanks to:

- Re-designed Ps cavity (2023) for higher positron acceptance and better e⁺ to Ps conversion efficiency
- Transport optimisation on Ps signal

G B R R

Report on 2024 activities: antiprotons

Transmission of 1.10⁶ \overline{p} through the Ps cavity target

Best value at 6 keV: 2. $10^6 \bar{p}$ But less control over losses: not used.

Thanks to:

- Review of all possible charge-up (2023)
- Beam quality from the trap + new lens
- Automatic optimisation runs at night
- At 4 keV: ~5.10⁵ p

Report on 2024 activities: antihydrogen

Report on 2024 activities: antihydrogen

Antihydrogen detection rate increased by ~30 At 6 keV: ~0.1 / shot

In summary:

- ELENA increased intensity!
- Trapping & bunching of \overline{p}
- Transport optimisations
- Increased Ps density by the cavity Main gain

Report on 2024 activities: antihydrogen

Ongoing analysis to provide cross section values for $\bar{p} + Ps(1S) \rightarrow \bar{H} + e^-$

At 4 and 6 keV

Compared to 2022:

- Better mastery of systematics
 e.g. detector acceptance for neutrals investigated with H⁻ beam
- Better statistics

Also: commissioning with H⁻ beam + carbon foil

G B A R

Report on 2024 activities: hydrogen anion

Cross section measurement for $H + Ps \rightarrow H^- + e^+$

- Opto-mechanical design finisalised in 2024
- Parts already integrated to GBAR
- Short test beam with H⁻ in December
 Confirmed changes required in p̄ beam:
 p̄ trap temporary replaced by transfer line

Many thanks to the ELENA team for the H⁻ and to BASE for good compromise!

Plans for 2025

Plans for 2025: improvements

Linac

Sparks in klystron
 Limited operation at 150 Hz from November

Update: water leak found in the insulating oil tank. Repaired. Klystron stability to be monitored.

Modifications of the W target / moderator

Plans for 2025: improvements

- Toward better $e^+ \& \overline{p}$ beam quality
- 1. Positron transport efficiency between HFT and Ps target
- Main bottleneck Conversely: where factors can be gained for \overline{H}^+

- Improve magnetic field transition Solution ready to be implemented
- Further work on plasma compression

Plans for 2025: improvements

Toward better e^+ & \overline{p} beam quality

1. Positron transport efficiency between HFT and Ps target

Main bottleneck Conversely: where factors can be gained for \overline{H}^+

• Improve magnetic field transition Solution ready to be implemented

• Further work on plasma compression

2. Continue \overline{p} trap developments

Trap moved out of beamline for H⁻ cross section experiment

• Electron plasma studies

Back in \overline{p} beamline in 2nd half of 2025

- Optimisation of potentials trapping and compression
- Optimise extraction improve time structure

Plans for 2025: physics

March \rightarrow JuneJuly \rightarrow November \overline{H} production:
possibility for cross section
measurements above 8 keVthen optimisation at 6 keV

1. Cross section for $H + Ps \rightarrow H^- + e^+$ Objective: precision better than 50 %

- End of installation this month
- Commissioning & 1st data taking

Request:

• H⁻ beam position (& intensity) stability

2. Lamb-shift experiment Objective: first Ly- α detection 20

- Csl coating renewal
- Further background reduction

With goal of first line profile in 2026

Summary

2024 Highlights:

GBAR improved its H detection rate by ~30
Over 5. 10⁶ oPs

- $10^6 \ \overline{p}$ through the Ps cavity
- Cross section measurement at 4 and 6 keV (analysis ongoing)

Record antiparticle accumulation
7.10⁹ positrons in 30 minutes - World record
7.10⁷ p̄ - « personal best »

Summed image mixing

Antihydrogen beam spot

and AD/ELENA team & F. Butin

G B R R

Back-up: Activities outside CERN

- \overline{H}^+ sympathetic cooling
- Simulation of stripping in Be⁺ Coulomb crystal No limitation
- Testbench for re-cooling of ions launched at different KE Using Be⁺/ Sr⁺ as \overline{H}^+ / Be⁺ proxi

\overline{H}^+/H^- photodetachment

- Toward a new calculation of photodetachment threshold Aiming at sub-µeV precision
- Project to measure the threshold at 1 µeV and provide the adapted laser for GBAR

Atomic processes in the GBAR Ps target and antihydrogen beam

• Cross sections calculations

Back-up: Previous achievements The GBAR collaboration, 1.6 9 MeV e Nucl. Instr. Meth. A 1040, 167263 (2022) 60 0 × 1.2 300 mA N_2/CO_2 « Surko » trap 200 Hz Positron number 9.0 9.0 9.0 Pulsed operation W target & moderator Transfer to HFT every 1 s 3.10^7 slow e^+ /s 1.4 10⁹ in 1100 s in 2021 0.2-The GBAR collaboration, Nucl. Instr. Meth. A 985, 164657 (2021) 0.0-500 1000 1500 2000 number of stacks 5 T Shield LINAC HFT RC BGT

Back-up: Decelerator

100 % deceleration efficiency to 3-10 keV Example at 5 keV:

Highly stable operation

