

Status report of the AEgIS experiment

156th meeting of the SPSC February 11th, 2025

R. Caravita* *INFN – TIFPA, Trento (IT)

on behalf of the AEgIS Collaboration

The AEgIS collaboration

Antimatter Experiment: gravity, Interferometry, Spectroscopy

Main physics drives

Tests of the Weak Equivalence Principle Spectroscopy and CPT tests ... and many more!

Available systems at AEgIS

antihydrogen, positronium, antiprotonic atoms

Specialties at AEgIS

Pulsed antihydrogen and positronium sources Laser-controlled charge-exchange processes Moiré deflectometry Pulsed laser spectroscopy

https://doi.org/10.1038/s42005-020-00494-z

z OPEN

Pulsed production of antihydrogen

ARTICLE Received 5 Nov 2013 | Accepted 27 Jun 2014 | Published 28 Jul 2014 Dol: 10.1038/ncomms5538 OPEN A moiré deflectometer for antimatter

Research lines and main achievements

The AEgIS apparatus in 2024

Main Developments in 2024: the beam extraction line

Downstream beam extraction port

- Opened a new CF150 downstream port
- New bellows assembly with complex vacuum and thermal design
- Terminated with gate valve for modularity

Removable micro-channel plate assembly

- Can be moved in/out beam axis
- New imaging system with < 50 um resolution

Main Developments in 2024: new sources for Physics

Source of negative iodine for antiprotonic atoms

- Commissioned, provides 10⁴ anions per minute
- **Transported to AD hall**, linking to AEgIS
- Outlook: co-trapping I⁻ with pbars in 2025

Finally installed our new ²²Na source

- Delivery in wrong capsule: extra 9 months delay
- Thanks to CERN robotics team, now fixed
- Installed in Sep24, fully functional

Main Developments in 2024: the moiré deflectometer

Design of external moiré deflectometer

- Two etched-Si 100 um gratings, tested on optical bench
- 3 detectors: imaging + timing + beam monitoring
- Rotating inner tube for B/G decoupling
- All mechanics designed and in production
- Goal: commissioning in the 2025 pbar run

Main Developments in 2024: the OPHANIM detector

The Optical PHoton and ANtimatter IMager (OPHANIM)

- 60 CMOS sensors, 30.8 cm² coverage, 0.8 um pixels
- 64% fill factor, \sim 70% detection efficiency \rightarrow 45% total
- World-record-breaking pixel count: 3.84 Gpx ¹
- Vacuum-compatible electronic design at tech. edge

Readiness

- Sony IMX686 validated with antiprotons in April 2024
- 2 x full design \rightarrow procurement \rightarrow construction \rightarrow testing
- All CMOS sensors successfully readout (no PCB flaws)
- Preliminary pbar-annihilation imaging successful in late 2024 run

Will be deployed in early 2025 for first beam extraction.

¹⁾ more than the Rubin Observatory LSST camera

Achievements of the 2024 Physics Run

ANTIPROTONIC ATOMS

Formation of antiprotonic atoms on buffer gas observed by the highly charged ions resulting from antiproton annihilation on gas atoms

Upgrade to the 2023 methodology

- Controlled gas injection by needle valve
- Total of 4 data taking campaigns (Ar, He)
- Improved data acquisition chain, q/m calibration with electrons and antiprotons

Observation of trapped HCIs from antiproton annihilations

Time-of-flight spectroscopy of trapped Highly Charged lons resulting from antiproton annihilation

- Observed charged ions higher than Ar²⁺ incompatible with collisional ionization by slow antiprotons.
- We only observe strong ionization of atoms in the trap in coincidence with annihilation events
- Helium peak linked to the presence of a He in the rest gas, masks the fully stripped Ar⁷⁺

Achievement #1: TOF spectroscopy of HCIs from antiproton annihilations

Milestone to perform TOF spectroscopy of annihilation fragments

Next steps: controlled formation in high-vacuum by laser photo-detachment of anions, cooling of annihilation fragments

Time-of-flight spectroscopy of trapped Highly Charged lons resulting from antiproton annihilation

- Observed charged ions higher than Ar²⁺ incompatible with collisional ionization by slow antiprotons.
- · We only observe strong ionization of atoms in the trap in coincidence with annihilation events
- Helium peak linked to the presence of a He in the rest gas, masks the fully stripped Ar⁷⁺

Achievements of the 2024 Physics Run

POSITRONIUM

Improvements in Ps target manufacturing

- Minimized exposure to air moisture
- New cut method to shape in final form

>> from 2.5% to 10% yield (x 4)* consistent with 2018

*a further x 2.5 may be obtained by reducing to 0.2 T

Impact of the new positron source

- Increase of factor x 8 in number of e⁺
- Reproducible e^+ plasmas with r = 0.6 mm
- 30% higher acceleration efficiency

>> increase of factor x 10

Direct Rydberg Positronium diagnostics

Method for a direct Rydberg Ps diagnostics

- Field-ionize Rydberg Ps and detect liberated e⁺ with MCP
- Clear signature (20:1 SNR) in laser ON/OFF measurements
- Signal scaling vs ionization HV
- Validates Rydberg excitation in-situ
- Sensitivity to Ps *n* quantum number

100 -

200

300

400

500

comera view: left

In 2024: unambiguous Rydberg Ps detection took 30 minutes

- Field-ionize Rydberg Ps and detect liberated et with MCP Enables Rydberg Ps spectroscopy in 1T field
- Clear signature (20:1 SNR) in lase ON/OFF measurements
- Signal scaling vs ionization HV
- Validates Rydberg excitation in-situ
- Sensitivity to Ps n quantum number

Achievements of the 2024 Physics Run

ANTIHYDROGEN

Antiprotons swinging in a parabolic potential

Status report of the AEgIS experiment, 156th meeting of the SPSC

Pulsed antihydrogen boosting: an example signal from 2023

Evidence of antihydrogen production in the collinear scheme and controlled time shift from the 2023 Physics run with 1.5 months of data taking

Production results with upgraded Rydberg Ps source

- Excess in laser ON/OFF data, significant in one night of data taking
- Confirmed timing shift proportional to e⁺-pbar delay as in 2023
- 0.8 events per run in 1.5 us window
- 40% detection efficiency: 2.0 Hbar per run

All Ps improvements since 2020

(collinear scheme and new trap geometry, higher Rydberg Ps, new e⁺ source ...)

- Next step: a velocity-controlled pulsed antihydrogen beam

Main developments

- 1) The downstream **beam extraction port**
- 2) The moiré deflectometer and its antihydrogen imaging detector (OPHANIM)
- 3) The **anion source** for controlled antiprotonic atoms formation

Achievements

- 1) Time-of-flight **spectroscopy for antiprotonic atoms** fragments
- 2) Single-shot **Rydberg Ps diagnostics**
- 3) A **40-fold increase** in **antihydrogen** production rate

Main plans for 2025

- 1) Install and **commission** the **moiré** deflectometer
- 2) Develop a forward-boosted antihydrogen beam
- 3) Controlled antiprotonic atoms formation

Bonuses

- 1) New concept of room-temperature portable Paul trap for antiprotons
- 2) Rydberg Ps spectroscopy in 1T
- 3) Further progresses on Ps laser cooling

Before LS3

Antihydrogen beam with 10 Hbar min⁻¹ or higher

First WEP test with antihydrogen in null magnetic field

Laser cooling of positronium

Cryogenic Ps transmiss. targets

Form Rydberg antiprotonic ions

Form highly charged ions

<u>Time-of-flight spectroscopy of</u> trapped nuclear isotopes

During LS3

Upgrade for Ps transmission targets and Ps cooling

Ps 1³S-2³P and 1³S-3³P spectroscopy with laser cooling

Ps n=3 hyperfine RF spectroscopy

2D Ps cooling and in B field

Ps charge-exchange with neutralized anions

After LS3

Precision antihydrogen WEP test in a null magnetic field

OTIMA atom interferometry with antihydrogen

Ps 1³S-2³S and 1³S-3³S spectroscopy with laser cooling

Spectroscopy of Rydberg antiprotonic atoms

Inertial sensing with Rydberg antiprotonic atoms

Search of hexaquark DM candidate via pbar-³He in traps

LS4 and beyond

Search for an antiproton EDM by antiprotonic molecule spectroscopy

Antideuteronic atoms formation and measurement of X-ray cascade

Anti-³He and Anti-T synthesis by antideuteron fusion in Penning traps

Rich antiproton and e⁺ physics program well beyond LS3

We would like to renew our interest in the ELENA team's ongoing efforts to investigate the possibility of an antideuteron beam.

Thank you for your attention

