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BASE uses single particles in advanced Penning trap systems, to study the fundamental
properties of protons and antiprotons with high precision.




Dedication

* To Walter Oelert — + 25.11.2024 (affiliated
to Julich, Bochum, Mainz)

* First detection of 11 antihydrogen atoms with
an energy of 1GeV

* Chair of CERN’s antimatter program until
2017

* Instrumental role in establishing the Extra
Low Energy Antiproton Synchrotron ELENA

* Mail from 17.10.2024 on p-transport:

* “Wow!!!l That’s fantastic! Congratulations! Those were
already old plans back in the LEAR days, but they were never
realized. Now you’ve made it happen for protons, and | think
that’s just amazing!

* My heartfelt congratulations to you and your team.

Once again, congratulations! Walter”

1 February 1996
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Setting the record straight
25 November 2005

Walter Oelert, leader of the team that 10 years ago obtained the first antimatter

0 Tomasz Rozek about the fact and fiction surrounding the

Dan Brown's been popular. A secret 2
brotherhood murders a physicist who managed to produce the first antimatter

on Earth. You have surely heard about the book?

I have even read it. Indeed the author has me killed at the very beginning.

Correct. You die and the antimatter
stolen from CERN is used to blackmail
the Vatican. CERN does produce
antimatter, and the contact of
antimatter with ordinary matter results |
in annihilation where large quantities
of energy appear. Aren't you scared that
one day Brown's scenario may become
real?

No, since there is no way to produce and
store a large quantity of antimater.
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First atoms of antimatter produced
at CERN

4 JANUARY, 1996

Geneva, 4 January 1996. In September 1995, Prof. Walter Oelert and an international team from Julich IKP-KFA,
Erlangen-Nuernberg University, GSI Darmstadt and Genoa University succeeded for the first time in
synthesising atoms of antimatter from their constituent antiparticles. Nine of these atoms were produced in
collisions between antiprotons and xenon atoms over a period of three weeks. Each one remained in existence
for about forty billionths of a second, travelled at nearly the speed of light over a path of ten metres and then
annihilated with ordinary matter. The annihilation produced the signal which showed that the anti-atoms had
been created.
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2l BASE — Collaboration

Mainz: Measurement of the magnetic moment of the
proton, implementation of new technologies.

CERN-AD: Measurement of the magnetic moment of
the antiproton and proton/antiproton g/m ratio Z

BASE-STEP: Development of transportable antiproton = :
traps

Hannover/PTB: BASE-LOGIC / QLEDS-laser cooling
project, new technologies

BASE-HHU: Offline antiproton studies
BASE-CDM: Axion Haloscope at HHU

More to come — BASE-Lepton / BASE Deuteron / BASE
MCP...
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BASE in a Nutshell

radial confinement: g — Bz
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BASE — Multi-Trap-System

Degrader HV Electrodes

Spinflipcoll  Electrongun  Pinbase

Precision 8,<05uT/

Cooling Trap: Fast cooling of the cylotron motion, 1/ < s (10 ximproved)
Analysis Trap: Ishomageneous fild fo the detection of antiproton spin fips, 8, = 300 mT / mm?

ﬁnvariance Theorem\
Ve = ,vf_ +vZ + v2

C. Smorra et al., Phys. Lett. B 769, 1(2017)

Axial detector

- / Reservoir \ "
B

= Antiprotons

Parking
Electrode

2 — Spin Flip Coil Alysisﬁap

= Cyclotron Detector

Axial detectors

B, = 300 KT/m vy
Cooling Trap
Cyclotron detector

Precision Trap
B, = 0.05mT/m

T=5K

New antiproton catching C
system and low energy
antiproton vacuum

technology.

Magnetic shimming
system for magnetic
field gradient
compensation.

* Upgraded AT electronics for
error-free nondestructive
Spin Quantum Transition
Spectroscopy

Cooling trap with 80
times improved cooling
time.
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S. Ulmer et al,, PRL 107, 103002 (2011)

First Non-Destructive Coherent Quantum Transition Spectroscopy with a Single Antiproton Spin
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year A. Mooser, S. Ulmer, et al. PRL 106, 253001 (2011)

C. Smorra et al., Nature 550, 371 (2017). S. Ulmer, A. Mooser et al. PRL 107, 103002 (2011)



BASE Annual Summary 2024

Experiment ONLINE throughout entire year 2024

Antiproton Run — Continuous Reservoir Monitoring — 472 days
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2024 Particle Consumption

g-factor measurement
[ campaign

20

-
oo

Losses due to electron contamination of the
transport section (BML/BML/EJW)

-
(@)

Losses due to electronics modification when
switching from 5-pole to 9-pole mode (BML/IA/SU)

Losses due to uncontrolled high-Q excitation of
the cyclotron mode (BA/PG)

particle number

4.5 months without
loss

Power supplies of transport system not correctly
initialized after control system restart (SU)

4 months O y

12+ . without loss skl "

—
S
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6 antiprotons used during
100 | 150 | 200 250 | 300 | 350 _ 400 | the entire 2024 RUN




Updated Antiproton Lifetime

L 1: separation stud: . .
‘ gfn{n:mxp ! . | Based on an antiproton reservoir
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Cyclotron Heating Rates: <+=%€%5Ecw+>
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* Put a lot of effort into our particle cooling techniques with CT at CERN and SC at Mainz




ﬁ - Improved Cooling Techniques / Maxwell Deamon / Sympathetic

Analysis Trap (AT) Cooling Trap (CT)

ferromagnetic electrode

> segmented electrode

spin flip coil
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RF manipulation coil RF manipulation coil

a Laser-cooled Be* ions Single proton Cryogenic LC circuit

313 nm
cooling laser
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C. Will et al. Phys. Rev. Lett. 023002 (2024)

https://journals.aps.org/prl/pdf/10.1103/PhysRevlett.133.023002

B. M. Latacz et al. Phys. Rev. Lett.

Demonstrated cooling of the axial
mode of a proton to 170mK

053201 (2024
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350 https://journals.aps.org/prl/abstract

Further progress, now: 80mK.

/10.1103/PhysRevlett.133.053201

Applicable to the antiproton

* Three-fold temperature reduction gives additional factor of three in time
reduction for particle preparation at given threshold.

* Explicitly demonstrated: robust 200mK particle preparation in 8 minutes.

* Headroom: Colder Electronics — SQUID detectors — 100mK traps


https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.133.023002
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.133.023002
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.133.023002
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.053201

Measurement Sequence

* At CERN, we are using a two-particle/three-trap technique to sample the
magnetic moment resonance

cle whi > @ 1
Cold particle which always has =5 S . S
. . . oF S spin state identification / initialisation ~ 380 s
single spin resolution e =
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Antiproton Magnetic Moment Measurements

e Antiproton: data collected between 28.12.2023 and 26.01.2024
* Proton: measurement carried out May to July 2023

0] T
) <200mHz FWHM

[
»

0.8} ] Not fully inverted due to magnetic
< measurement decoherence

N /Q

invesion

g 2/ K« Previous g-factor resonance
0.0

‘S
2 4

-4 -2
frequency (Hz)
 Statistical resolution for both antiproton and proton at about 80 ppt (6.4mHz) to 100
ppt (8.1mHz line center).
» Systematic studies ongoing (tough at this accuracy in the AD).




Systematic Frequency Shifts

Ve = [vE+v2 4 v2

Question: How well does the invariance theorem meet our assumptions, and how large are the deviations?

* misalignment of B-axis and E-axis cancels out
* Elliptic disturbances in trapping potential
cancel out.

tilted trap
drifts B(t)

contaminants < Q > B2 and B1

relativistic
shifts

potentlal

shift in B1

image charge
/ current

In addition to this: trap related technical shifts.

shift with uncertainty

shift (p.p.t.) for g-factor
Image Charge Shift 43.6 (< 0.1)
Trap misalignment 3.1240.1)
Relativistic Shift 36.14.00

'y shift 100 (1.1

' shiaft =5

By shift 6.5(0.6)
Magnetic bottle shift < 1

Axial magnetic bottle shift < 1

B Shift <1

/B, Shift 0.13(0.01)

Dip and Axial resonator shift 24.3(23.3).
Particle Identicality 0i1a)

PT Spinflip Drive Shift (axial resonator)

AT Spin flip fidelity shift 0(3)

PT Spinflip Drive Shift (thermal) 17.4(1.4)

Drift of the particle due to transport procedure under evaluation
Spin flip identification uncertainties under evaluation
Lineshape under evaluation

Currently, these systematic studies are
still ongoing.



Precision

Reservoir

Arsyss Cooing tem pe rature (K)

Trap
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Park
Electrode
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Dominant Systematic Uncertainty
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* Temperature dependent paramagnetic susceptibility of

copper:
o * Explicit shift measurements with
£ o015 - 4 +* 1 uncertainty of 70ppt to 100ppt.
= . fe /H' (dominant systematics)
@ 0.010p [\ N ] . . .
2 | = ... =] e Trap of silver and titanium
@ 0.005 ]
s | * Develop techniques towards single
= ool particle measurements.
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Towards a Single Particle Measurement

* Did one of these measurements already 10 years ago at Mainz — resonance

sampling took 1.5 years — here at CERN, in the AD during yets, it would take
6 years.

* Optimization towards higher performance:
e Cooling trap (PRL Latacz)
* Implement real time cooling (part of the YETS program)
* Higher temperature acceptance (great progress in the last run)
e Better analysis trap with high multipole suppression




Analysis Trap Optimization ﬁ

* Smallest trap used in precision Penning trap 3(C, 5C2\/[E,
physics, with an inner diameter of only 3.6mm. Vz =Vzo| 1 Ve

_I_
4

cz 4¢3

 Sensitive to disturbance of trapping potential

due to interaction with the thermal axial 1 T
detection reservoir. X(Tz, Cy, G, vz) = sz dT - exp | = | Xo (T,, C4, Ce,v,)

Z

~70 spectrum of AS offset = -0.0747 spectrum of A5 offset = -0.170

Asymmetric

o = 40mHz

T Harmonicity Tuning

Signal [dB]
g
T
Signal [dB]
|
&
T

-04 -02 0.0 0.2 04 -04 -0.2 0.0 02 0.4

- TLE . F "
. 'l..h- | frequency shift (I'fz)

SHR

frequency shift (Hz)
I

. R R S R _100 I 1 I i
20 25 30 35 40 wL - 20 25 30 35 40

Frequency [Hz] +6.578e5 Lo * Frequency [Hz] +6.578e5

SNR of 13 dB

e SNR of 22 dB

Much more harmonic trap -> Improved spin state detection / phase detection possible / higher temperature
acceptance -> important step todwards single particle measurement



Analysis Trap Phase Methods W—'

Idea: Detect phase evolution in comparison to a know reference signal — Detection much faster } Eretation
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Development of Phase Sensitive De“tTe_ctlon

* How the technique works: Exrc;atg:l Coupling o c'?ﬂ.ng
generator 0 generator F51 penerato
-| -
RS NS LA
v v
. I'b - - . . .
e l rpe V.. Allan deviation
'm\"/*\mxr‘ Frese $4# dip method
U/ ¢ ¢ - #4¥ AD-off PM
¥4 triggered PM
L ¥ 1 *
w | |
[ J TR
et et ety
Experiment resultution during the run is currently - 1 - L L ! ()
completely limited by the AD imposed magnetic field a 3 10 15 20 23 30

fluctuations Laug [ MiN



Coherent Spin Spectroscopy

 Demonstrated for the first time
with antiprotons. 10
— fit AD off
—-—- fit AD on
* Derived spin-coherence times of 0.8 1 N $ ADon
order 40s! T $ ADoff
0.6 1 - "'1" d \\
QZ 4 - ¢ L
Per = sin? (n 02 + Azt)
SF 02 + A? \/ 0.2 [l
0.0 A
Estimated Full-Width-at-Half- 0 1 2 3 4 5
Maximum of the Rabi-resonance time (s)
width is at 25mHz or at 300 p.p.t.
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FWHM:25mHz
Center: <10ppt

invesion

FWHM:200mHz
Center: 70ppt

-0.4

-0.2 0.0 0.2
frequency (Hz)

0.4

= Forecast: Fully Coherent Single Particle Measurement

Possible based on
40s spin cohérence
time measurement

Measured
2024/2025 with
AD-OFF and
currently running

Possible to improve the antiproton magnetic moment value by another factor of 10 in
statistics (10 ppt) at reduced systematic uncertainty (but didn’t have time to implement it)



Problem: AD Fluctuation

Not anymore possible to measure in the AD-Hall

1.0
<
0.8
: &
© 06
T ey
S
= 04
FWHM:200mHz AD-magnetic field |
0.2 Center: 70ppt fluctuation amplitude g D';'
@ 91
0.0 = 2
—4 = 0 2 4 &
frequency (Hz S
0.2}

Possible based on
40s spin cohérence
time measurement

0

50 100 150 200 250 300 350
Time (s)

Equivalent v, shift (Hz)



Charge-to-Mass Ratio Measurements

e Status: Measurement at 16ppt resolution (420uHz line-center) exists.

* Perspective: Next precision goal would be the p.p.t. level -

Fluctuation 2000ppt / 60mHz / 4nT 200ppt / 6mHz / 0.4nT 200ppt / 6mMHz / 0.4nT 70ppt / 2.2mHz / 0.13nT
(shielded)

Precision goal 2ppt 2ppt 2ppt 2ppt

Measurements 1.000.000 10.000 10.000 820

Continuous Sampling 7.5 years 28 days 28 days 2.5 days

Realistic Sampling 23 years 3 months 3 months 2.5 days

Total measurement > 1 lifetime of an 3 years (AD) 9 months 2 weeks?

time Exp.Phys.

If CPT-V: Noone would ever be able to confirm!
(and we would likely not trust ourselves...) Not possible to optimize, due to bckgrnd noise




-ﬁ How can we make these experiments better?

e Situation in AD/ELENA

e BASE frequency fluctuation )1E”i )

_ BASE-CERN State of art (other exp.)
(AD shutdown) 250 ppt — 800 ppt

OIVEI A CEETTE G EE g E - Nights & weekends in 24/7
shutdown periods (5
months/year) 100% duty cycle
15% duty cycle

Are not anymore naturally progressing along physics
ideas, and spend a good amount of time «waiting»
for the accelerator to shut-off.

0.4}

o
)

scatter (Hz)
o
o

Antiproton and Hy /H;
transport

—04l i ] Passive Shielding

time (month)

 If you want to be 50 years old, and still as happy expensive, boring, New technology,
about christmas as a 5 year old child — JOIN BASE! already quite optimized | exciting, multiplicative




_ 1o Stat.  |Sys. " WE AD-ON
=iSi= To make these experiments better.... ;.| it
: _ _ 3§ -0s}; AD-OFF [iiii-ic ]
. 04 350ppt - AD OFF ] > L [ eenaon
* BASE eXperlmentS Pressure manifold stabilized "o 100 200 300 200
—~ 02 . .
limited by fluctuations £ 025
— o — |
imposed by the CERN g ol
| hai e = e |
accelerator chain 2 2008 D OFF - L e v . VY
-0.4} Pressure manifold noisy AD ON NN \ ‘U ‘\ <“ ‘J".‘U“ 0'000 100 200 300 200
N S
e L

* Antiproton transport to dedicated precision

laboratory space at HHU Dusseldorf.

New chair to support BASE Physics created at HHU in 2022 — clear long-term perspective of BASE Physics program
SFB-TR (DFG), with several BASE-related projects involved, in preparation (HHU/Mainz).

Magnet cryostat J—i ~ '
Electronics ¢ = . é |
: 1Y N = 1} 28
1.8 m = g
' - =




Task List

Y SR e | el .w—-.\,.w
|| THg R

1.) Load protons into an open trap
system

2.) Observe the particles and check
the vacuum (no loss detected)

3.) Disconnect the device from the
installation in the zone

4.) Crane out of the hall
5.) Drive it around on a truck at CERN
6.) Move back to experiment zone

7.) Continue experiments

8.) Extract particles




2= BASE-STEP-Transport — Loaded with Protons

.. ELENA - 100 keV
'

7 AU/ELENA

Erster A
auBer




Particle Extraction

* Gabrielse transported electrons in a closed and pinched single-trap in 1993.

Cryocooler Demonstrated After Transport

[] Beamline vacuyas

[J 1078 mbar Open system for in- and

[ 1071° mbar i i i i
i ejection while keeping | 50K heat shield 50
B 1071 mbar
good vacuum
|4 K heat shield }
Inlet valve i 40 !
)
Electrostatic Quadrupole L1 |He tank c
deflector B
E 30
o
+ Trap biasing filters "'5
L —— |-
V ~— @ 20
+
g g £
3
Inlet chamber Trap chamber c 10
. Image-current detectors
Beam Monitor 5 .
Differential pumping section
Valve 0
Catching trap (ST) Storage Trap (5T) 0 1 2 3 4 5 6 7
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1. Separation of particles from the

transport reservoir
2. Extraction of particles from the trap

Loss-less transport of about 100 particles has been demonstrated.

Excellent Vacuum.




HHU Dusseldorf

-ﬁ Transport of STEP to HHU Dusseldorf
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Transport of BASE-STEP to HHU has been

Altzerlané\ Vi § | demonstrated

N f\g\A == — S = Currently: Uprade of the system in the
A Antimatter Factory, CERN ™" + i ‘ HHU laboratories.

Plans: First antiproton transport in 2025



Performance of STEP at HHU
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BASE-STEP operation at CERN while the AD is on -
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Clear potential for considerably improved experiments in the
offline laboratories at HHU.
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BASE Tracking Record — Fundamental Constants

S. Ulmer, et al., Nature 524, 196 (2015)
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Since here, improved measurements only possible due to
reservoir operation. Allimproved measurements offline.

BASE getting slower — in particular due to AD operation in the background.



Reason: BASE/AD Interaction

1.0F AD/ELENA-ON
Fluctuation 200ppt / 6mHz / 0.4nT i 0.5 ' 1 2000ppt / 60mHz / 4nT
x ‘) shielded
S 00 |||l. {=telced)
2 thet | 5
o -0.5f & - - 3 L 1
Precision goal 2ppt : Sl e ELENA ON . 2ppt
-1.0L 0 : - .
Measurements 10.000 0 100 200 300 400 1.000.000
Continuous Sampling 28 days. 05 7.5 years
E 0.20
Realistic Sampling 1 months 015 23 years
)
£ 010
3 005
S 0.
Total measurement 3 months 0.00 0 100 200 300 400 > 1 lifetime of an
time time(d) Exp.Phys.

Operating BASE in the AD/ELENA Facility feels a bit like owning a 300PS sports-car with engine throttled to 50PS




= BASE-CERN — Offline Laboratory

We request an offline laboratory for BASE-CERN, on the CERN campus, to be
supplled with antiprotons from the AD-hall.

* Plan: Move BASE from the AD into this offline laboratory.

e Wish List:

 Atleast 70 m?, better 100 m? of space.

. ﬁir conditioning and temperature stabilization to fluctuations below 200 mK during the
ay.

* Magnetic background fluctuations at amplitudes below 10 nT or better.

* Connection to the LHe recovery-manifold of CERN.

* Optimal would be a space, that has access to an industry crane for dewar handling and to
place the large equipment.

* Atotal h|th of >4.5 m to be able to take care of the cryo-liquid maintenance with the
existing flexible transfer-lines.

Guaranteed: 100-fold improved measurements of the antiproton
fundamental properties at much improved iteration rate.

A lot of headroom for additional ideas: operation of two experiments to
synchonuously measure moments and mass ratios, antihydrogen molecular
ion

invesion

FWHM:25mHz
Center: <10ppt

FWHM:200mHz
Center: 70ppt

-0.4 -02 0.0 0.2
frequency (Hz)

0.4




Precision Offline Laboratory at CERN

* If space for not only one trap experiment — e Guaranteed: 100-fold improved measurement

operate magnetic moment and charge to of the antiproton fundamental properties.
mass ratio measurements in paralle

* Place an antiproton container in the ¢ Multiplicative impact to many additional
corner loaded with 100000 pbars and antimatter experiments, opening new
sample lifetime to millions of years... branches of physics:

* Parallelled measurements in different
orientations Antimatter Molecule Spectroscopy
* Open an exotic physics program beyond_ e A e
antiproton, e.g. do spectroscopy on Pb
dU 1+ )
an Antihydrogen transport

* Place in parallel a lepton moment [ ]
experiment there to perform most precise
tests of the SM at CERN (QED sector)

Of course — if we talk about an offline laboratory for BASE, why not talking
about an offline building for the entire AD community and other ultra-high-
precision efforts that could be attracted to CERN???




! BASE Planning 2025

Jan __|Feb _|Mar__|Apr__|May _llune luly _|Aug _Sep _|Oct _INov__|Dec _

Antiproton magnetic moment , Beam-taking and preparation for
Experiment stop and upgrade

measurements

Design and machining of 7-pole AT

Design of an imporved B1-coil system

Detector upgrade of cooling trap

next YETS campaign

Analysis trap Q-Switches

BASE-STEP upgrade Beamtime BASE-STEP Antiproton transport




1.0 [ |
Su I I l I I | a ry osl <. M1 4y A FWHM:25mHz
off T\ R 1 Center: <10ppt
I'|: ;'.,|
|

* Measurement of the antiproton magnetic moment

invesion

with a statistical resolution of about 100ppt. .
Systematic studies ongoing. : I
| .frequer‘\cy (Hz) | |
* Great progress with phase sensitive detection of the \ All methods to measure the
axial oscillator in the AT, which is an important step green resonance demonstrated:
towards a double trap measurement. Not implemented into the

* Great progress in phase sensitive detection of the

cyclotron oscillator for a fully coherent single particle

experiment scheme, due to a lack
> of calm offline time — we would

anyway not be able to do all the

measurement of the antiproton moment. systematic studies at the
* Spin cohérence equivalent to 24mHz line-width has required resolution in the only 3
been demonstrated. } calm months per year which we
have available
* First proton transport in BASE STEP demonstrated. ‘
Goal: Transport pbars in 2025. We request an offline

- laboratory at CERN, please

support this request...




BASE Tracking Record

2023
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Thank you for your attention!
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