Contribution ID: 33 Type: not specified

Bootstrapping the Chiral-Gravitational Anomaly

Friday 6 June 2025 10:00 (15 minutes)

We analyze causality and unitarity constraints

in graviton scattering amplitudes, aiming to establish new bounds on theories with U(1)-gravitational anomalies, such as axion models

or strongly-coupled gauge theories. For this purpose, we show the necessity of coupling these theories to gravity. We obtain a universal scale $\Lambda_{\rm caus}$ at which states with $J \geq 4$ must appear in the theory. We show that this scale can lie below the quantum gravity scale. For axion models, we get $\Lambda_{\rm caus} \sim \sqrt{M_P f_a}$ where f_a is the axion decay constant.

In strongly-coupled gauge theories in the large- N_c limit,

the presence of glueballs allows to evade these bounds, provided the number of fermions $N_F \ll N_c$ and the 'tHooft coupling is not large.

Nevertheless, for models that have a holographic 5D dual (large 'tHooft coupling), $\Lambda_{\rm caus}$ emerges as a new cutoff scale, unless certain conditions on the parameters of the 5D models are satisfied.

Authors: Prof. POMAROL, Alex (IFAE and BIST, Universitat Autonoma de Barcelona); Prof. MA, Teng (ICTP-AP, University of Chinese Academy of Sciences)

Presenter: Prof. MA, Teng (ICTP-AP, University of Chinese Academy of Sciences)

Session Classification: Tools / Amplitudes