Contribution ID: 43 Type: not specified

Double ALP production at the LHC

Thursday 5 June 2025 11:50 (15 minutes)

Axion-like particles (ALPs) are hypothetical pseudoscalar states that emerge as pseudo-Nambu-Goldstone bosons from the breaking of an approximate global U(1) symmetry. They appear in several extensions of the Standard Model, offering potential solutions to the strong CP problem, the muon (g-2) anomaly, neutrino mass generation, and dark matter. While most collider-based studies focus on the production of a single ALP, in this work I investigate scenarios involving the production of an ALP pair. These processes offer the opportunity to probe dimension-6 operators, which include either Higgs-portal interactions (if the ALPs are produced via exotic Higgs decays such as $h \to aa$) or shift-symmetry breaking couplings, like $a^2 \, G_{\mu\nu} \, G^{\mu\nu}$, which are typically excluded in conventional shift-symmetric constructions of the ALP Lagrangian. In particular, I focus on the process $gg \to aa \to 4\gamma$, considering both the standard shift-preserving coupling and the shift-breaking gluon interaction. Our analysis simultaneously considers the presence of couplings to both gluons and electroweak bosons, including the standard dimension-5 operators as well as the dimension-6 interactions.

Authors: PAGANI, Davide (INFN, Bologna (IT)); BRIVIO, Ilaria (University & INFN Bologna); Mr MEONI,

Simone (INFN, University of Bologna (IT))

Presenter: Mr MEONI, Simone (INFN, University of Bologna (IT))

Session Classification: Extended Scalars