

Design considerations for the BDF/SHiP production target 13th International Workshop on Neutrino Beams and Instrumentation (NBI2024) AYA'S Laboratory Quantum Beam Research Center (AQBRC), Tokai, Japan.

<u>Rui Franqueira Ximenes</u>, Mike Parkin, Alvaro Romero Francia, Tina Griesemer, Damien Grenier, Christophe Yves Mucher, Steven Sorlut, Jean-Louis Grenard, Marco Calviani, Giuseppe Mazzola, Luigi Esposito, et al (SY-STI), Francesco Dragoni, Nikola Zaric, (EN-CV) Stefano Sgobba, Luca Gentini et al (EN-MME), Claudia Ahdida (HSE-RP), Matthew Fraser et al (SY-ABT) on behalf HI-ECN3 Project

2024/10/09

Content

- BDF Target requirements
- Overview of BDF Target design options
- TZM + W water-cooled target (baseline)
- Motivation to look for alternatives
- Nb-clad target
- Cu-W Target
- Pure W He-cooled target
- Conclusions & outlook

Also @ NBI2024

- **Richard Jacobsson** The search for Hidden Sector experiment and its tau neutrino program
- Jean-Louis Grenard BDF target station design
- Claudia Ahdida Radiation protection studies and considerations for the ECN3 high intensity project
- **Matthew Fraser** The new ECN3 high intensity facility for the BDF/SHiP experiment and high intensity beam transfer

.

BDF/SHiP Target

Beam Dump Target / SHiP Target

Fully absorbe all p+, maximize production of charm and beauty hadrons & reabsorption of pions, muons and kaons

BDF Target

Target requirements

- Physics:
 - high-Z material & with short interaction length
 - Fully absorb SPS p+ beam
- Engineering:
 - 305kW power \rightarrow cooling needs
 - 305kW power → temperature & thermal-induced stresses
 - High nr of spills & POT → mechanical fatigue & radiation damage
- Safety:
 - High activation → Remote handling, waste disposal considerations, spallation/contamination products...

Baseline beam parameters of the BDF Target operation. <u>https://doi.org/10.23731/CYRM-2020-002</u>

Proton momentum (GeV/c)	400	
Beam intensity (p ⁺ /cycle) ~ 4.0% ¹⁰	4×10^{13}	
Cycle length (s)	7.2	
Spill duration (s)	1.0	
Beam dilution pattern Ci		
Beam sweep frequency (turns/s)	4	
Dilution circle radius (mm)	50	
Beam sigma (H, V) (mm)	(8, 8)	
Average beam power (kW)	356	
Average beam power deposited in target (kW)	305	
Average beam power during spill (MW)	2.3	

Very similar requirements to a neutron spallation target & other targetry applications Synergies with other labs are being pursued

Overview of BDF Target design options

Baseline Design (CDR) – Water cooled, W + TZM cladded w/ Ta2.5W

- Pursued during the conceptual design phase https://doi.org/10.1103/PhysRevAccelBeams.22.113001
- Prototype + test with beam + Post irradiation examination
- Still some safety aspects to be addressed
- Could be further optimized for physics

Alternative designs currently being studied in the TDR

Baseline-based concepts: with W rolled material, Nb-cladded Target, thin Ta cladding...

W Helium cooled Target

- Removes water from beam
- Better physics performance
- Reduces decay heat & residual stresses
- Conceptually different system!

Enclosed compact Cu + W Target

- Removes water from beam
- Keeps physics performance
 - Reduces decay heat
- Increases T and stress

SY

BDF Baseline Target Design

Baseline Design (CDR) – Water cooled, W + TZM cladded w/ Ta2.5W

- Pursued during the conceptual design phase <u>https://doi.org/10.1103/PhysRevAccelBeams.22.113001</u>
- Prototype + test with beam + Post irradiation examination
- Still some safety aspects to be addressed
- Could be further optimized for physics

Alternative designs currently being studied in the TDR

Baseline-based concepts: with W rolled material, Nb-cladded Target, thin Ta cladding...

W Helium cooled Target

- Removes water from beam
- Better physics performance
- Reduces decay heat & residual stresses
- Conceptually different system!

Enclosed compact Cu + W Target

- Removes water from beam
- Keeps physics performance
- Reduces decay heat
- Increases T and stress

BDF Baseline Target Design

Water-cooled, Ta-cladded TZM + W Core

- TZM: Absorbs most of the power. Higher strength, better creep resistance, higher recrystallisation temp wrt Mo.
- W: Good radiation damage resistance. Best for physics.
- Ta2.5W: To avoid corrosion-erosion of the core materials
- Cooling: 22 bar, 5 m/s, ~660l/min, ~305kW of heat.

Manufacturing

- Forged TZM and sintered W (single blocks)
- Diffusion bonding with cladding via Hot Isostatic Pressing

(STI)

Target Core with reasonable physics performance & that allows diluting (longitudinally) the energy deposition

BDF Baseline Target Prototype + PIE

Prototype Beam tests

- Validate manufacturing and test operation at identical temperatures & mechanical stresses.
- Reduced diameter (80 mm) prototype.
- Tested in 2018 on a dedicated slow extraction (SX) testbench in the T6 primary beam line in TCC2 at CERN. Total of 2.4 × 10¹⁶ p⁺

Post Irradiation Examination

• Design mostly validated but with few caveats

Post-irradiation examination of a prototype tantalum-clad target for the Beam Dump Facility at CERN, T. Griesemer, R.F.Ximenes, https://doi.org/10.48550/arXiv.2410.01964 (under submission to PRAB)

In search of an alternative design Main motivations

- ➢ Most of the shower develops on TZM and not on W → core could be further optimized for physics
- Water in-beam promotes formation of radicals

 safety concerns to be addressed or water removed
- Decay heat on baseline target is considerable & driven by cladding. Possibility of LOCA (Loss Of Coolant Accident) poses a critical safety risk -> Reduce Ta cladding
- ➢ PIE revealed W quality to be poor → Look into more robust W supply

Baseline Design (CDR) – Water cooled, W + TZM cladded w/ Ta2.5W

- Pursued during the conceptual design phase https://doi.org/10.1103/PhysRevAccelBeams.22.113001
- Prototype + test with beam + Post irradiation examination

Nb-cladded baseline target

- Still some safety aspects to be addressed
- Could be further optimized for physics

Alternative designs currently being studied in the TDR

Baseline-based concepts: with W rolled material, Nb-cladded Target, thin Ta cladding...

W Helium cooled Target

- Removes water from beam
- Better physics performance
- Reduces decay heat & residual stresses
- Conceptually different system!

Enclosed compact

Cu + W Target

- Removes water from beam
- Keeps physics performance

Reduces decay heat

Increases T and stress

Nb-cladded baseline target

Selection of Nb-alloys:

- HIP bondable
 - Phase diagrams: Good solubility no critical intermetallic phases
 - **Diffusivity**: as much diffusivity into W and Mo as Ta.
 - Ductility: Nb identical to Ta
- Compliant with Thermo-mechanical conditions
- Promising LOCA improvement

Temperature after LOCA Assuming htc=1W/m2.K

SY

Accelerator Systems

SY

Enclosed compact Cu + W Target

Baseline Design (CDR) – Water cooled, W + TZM cladded w/ Ta2.5W

- Pursued during the conceptual design phase https://doi.org/10.1103/PhysRevAccelBeams.22.113001
- Prototype + test with beam + Post irradiation examination

He

- Still some safety aspects to be addressed
- Could be further optimized for physics

Alternative designs currently being studied in the TDR

Baseline-based concepts: with W rolled material, Nb-cladded Target, thin Ta cladding...

W Helium cooled Target

- Removes water from beam
- Better physics performance
- Reduces decay heat & residual stresses
- Conceptually different system!

Enclosed compact Cu + W Target

- Removes water from beam
- Keeps physics performance
 - Reduces decay heat
- Increases T and stress

Enclosed compact Cu + W Target

(STI)

Accelerator Systems

Alternative designs: W Helium cooled Target

Baseline Design (CDR) – Water cooled, W + TZM cladded w/ Ta2.5W

- Pursued during the conceptual design phase https://doi.org/10.1103/PhysRevAccelBeams.22.113001
- Prototype + test with beam + Post irradiation examination

He

- Still some safety aspects to be addressed
- Could be further optimized for physics

Alternative designs currently being studied in the TDR

W Helium cooled Target

- Removes water from beam
- Better physics performance
- Reduces decay heat & residual stresses
- Conceptually different system!

Enclosed compact Cu + W Target

- Removes water from beam
- Keeps physics performance
- Reduces decay heat
- Increases T and stress

Other concepts: Baseline with W rolled material, Nb-cladded Target,...

Helium cooled blocks (without cladding)

- Removes the high stress regions of the baseline design (Ta cladding)
- Allows higher surface block temperatures (no risk of boiling)
- Removes radiological concerns with the water
- All core material is W (good for physics)
- But HTC is lower
- New cooling system complexity and cost

BDF He system parameters			
Thermal Power	305 kW		
Inlet Pressure	16 bara		
Pressure Drop	<2 bar (high estimate)		
Mass flow	345 – 400 g/s		
Volume flow	0.13 -0.15 m ³ /s		
Inlet temperature	30 °C		
Outlet temperature	200-170 °C		
Heat transfer coefficient	1000-2000 W/m ² /K		

	ESS 2024	BDF	LBNF 2023
Inlet Pressure	11 bar	16 bara	4.5 bar
Swept vol. flow rate	1.6m ³ /s	0.13-0.15m ³ /s	0.076m ³ /s
Target deposited heat	3MW	305kW	35kW

- Compressor skids 12/15 bar(g)
 - Rotary lobe compressor.
 - Oil free, magnetic coupling.
- 3 heat exchangers (Water/He_(g))
 - Shell and tube construction.
 - Demineralised water on primary side
- Filtration

SY

Accelerator Systems

•

- HEPA/Active carbon filter
- Filling and pressure maintenance system
 - Vacuum with turbomolecular pumps + bottle racks w/ pressure reducers
- Inline gas spectrometer
- Purification system: Cryogenic Low Temperature Absorption (LTA)
- Flanges (w/ metallic gaskets), Globe valves, 304L piping, etc

Design approach

- Cooling station & target have been considered together for system temperatures and pressures
- Design approach has included Defining Design limits

□ Stress

□ Fatigue

Block Temperature

- □ Surface temperature (e.g. limited oxidation)
- □ Irradiated properties
- Applied these limits to target block position optimisation

 Used safety margins >2 on irradiated (degraded) material properties at 2dpa. <2dpa expected)
 Extrapolation and rule-of-thumb factor used to obtain irradiated fatigue limits due to lack of data

Accelerator Systems

BDF operational conditions			
Target design lifetime	5 years		
Max dpa	1.6 to 1.2		
Max He implantation	220 to 143 appm		
Max stresses	150MPa		
Max bulk temperature	400°C		
Max W-to-He surface Temperature	350°C		
Beam parameters	Same as for Baseline, except beam size		

19

*"Application of hot isostatic pressing (HIP) technology to diffusion bond refractory metals for proton beam targets and absorbers at CERN, "J. Descarrega et al.; Material Design and Processing Communications. 8 August 2019 https://doi.org/10.1002/mdp2.101

BDF W Helium cooled Target

The Core blocks

- W sheets, HIPed together with interlayers of ~50um Ta foil (or other – to be explored)
 - \rightarrow Improved mechanical properties compared to Sintered blocks used for CDR.
- Using W sheets thickness 10mm ±5mm
 - \rightarrow As thick as reasonably possible with the best mechanical properties.
- Ta interlayer foil

SY

Accelerator Systems

- \rightarrow builds on previous HIPing experience*
- **Options of joining being investigated:**
 - Hot Isostatic Pressing
 - Vacuum Hot Press (used at SNS)
 - Spark Plasma Sintering (used at SY)
 - Tungsten Powder Injection Molding.
 - Electron Beam Tungsten Rapid Prototyping

Capsule may be partially/fully machined away after HIPing.

Drivers:

- Must be clad for HIPing joining process
- Don't want cladding: high stresses at the cladding *
- Don't want cladding: Ta produces lots of decay heat
- Do want cladding at circumference: Compressive stresses beneficial to W sheets
- Do want cladding : Protective layer against oxidation / corrosion-erosion •••

BDF Prototype Target(s)

- To be constructed and tested in NA T6 on the existing SX test-stand
- Staged approach with tests in 2025 and then 2026:

2025 – Static He, W Target

- Few O(50) shots → pulse temperature & stress conditions. Low activation.
- W-W integrity
- Thermocouples performance
- FEM benchmark
- (possibly) outgassing measurement
- Light PIE in YETS25/26

2026 – Actively He-cooled, W Target

- O(2000-3000) shots→ SS + pulse temperature & stress conditions. More data.
- W-W integrity (complementary, building up on 2025 tests & material R&D). Low cycle fatigue.
- He skid operational experience.
- High speed He +Temperature effects on W
- FEM/CFD benchmark
- Comprehensive PIE >2026
- 2025 provides pre-validation and earlier inputs for technical specification & ensures at least some level of testing is done (2026 is a short run!)
- 2026 builds on top of 2025 material R&D and beam tests. Provides a comprehensive testing/validation of the target core & cooling system

CÉRN

BDF Prototype Target(s)

Prototype target 2025 - Static Helium concept

Equivalent Stress Max, all blocks (MPa)

	Cycle length (385°C max Temperature at pulse)	Number of 7.2 s periods
natural convection	432 seconds (7.2 mins)	60
5 fans at 3000 rpm	350 seconds (5.8 mins)	48.6
5 fans at 6000 rpm	200 seconds (3.3mins)	27.8
Mass flow 18.3g/s	43.2 seconds (0.72 mins)	6
Mass flow 36.6g/s	21.6 seconds (0.36 mins)	3

(STI

SY

Accelerator Systems

CÉRN

Conclusions & outlook

- A water-cooled baseline design exists with a core of TZM and W.
- Sound design, yet with potential for physics optimization and with some radiation protection caveats
- W material quality used in the 2018 prototype was not good

Following HI-ECN3 project approval and start of TDR phase

- Multiple alternative designs explored in view of mitigating water radiolysis, decay heat and improve physics performance.
- He-cooled target most promising option. Being explored in detail.
- Presently tackling
 - Definition of core segmentation taking key metrics and safety margins
 - Overall Target design
 - Material R&D for the W base material and bonding of the assembly
 - Detail design of a prototype to be tested with beam in 2025 & 2026
 - Design of the cooling station
 - Addressing Radiation Protection aspects

home.cern

WP3 – Target & BIDs: Planning (key dates)

TDR phase (main activities) – (2024-mid 2026)

- Target (& BIDs) conceptual design followed by detailed design 1)
- Prototype(s) Target Design, construction and beam tests 2)
- 3) Material studies, R&D and Procurement

Production phase – (2026 – 2030)

- **Detailed Design phase** 1)
- 2) Procurement & production of components and systems
- Tests/dry-run, installation activities 3)
- Material tests/PIEs 4)

SY

Commissioning & operation

Target Options being Considered

Beam Sigma & sweep radius

- 16 mm vs 8 mm (baseline)
- 50 mm sweep radius

Core geometry

Core Size

Full 360 ° disks

- Benefits for stress and fatigue
- Requires slightly larger diameter core for physics
- To be seen if compatible with beam dilution system

Nominal gaps <0.5mm

- 1/8th target requires diagonal cuts to prevent shine path (effective but adds complexity)
- Or offset cuts (less effective)

Ongoing Material Studies

- Exact tests and number of tests currently being defined
- Testing will be performed on
 - The raw W sheets
 - The joined blocks (similar to the baseline prototype after HIPing tests)
 - The joined blocks post-beam (similar to the baseline prototype tests)
 - In depth testing from 1 supplier & basic characterization from 2 more suppliers

	Summ	ary of tests	- Raw W sheets
Test n#	Туре	Property to be reported	Additional information
1	Mechanical testing	Yield and Tensile strength, elongation at break	Determine tensile properties of W at different temperature conditions
2	Microstructure analysis	Density, purity of W, Hardness, Grain size, etc	OM, SEM, EDS, Hydrostatic weight measurements, VickersHardness, etc
1 3 Fatigue test	Fraduren eo limit	Series of fatigue tests to determine endurance limit in W and W-W interface, for different	
	Faligue lest	Endurance limit	temperature conditions
2 4 Erosion test	Airrobalance weight measurement Malumetric estimat	Series of erosion tests following ASTM : G76 – 13 standard (adapted to BDF conditions) aiming to	
	Elosion lest	nicrobalance weight measurement, vorumetric estimat	determine the erosion in W at different He stream angle
5	Thermal testing	Thermal conductivity	LFA at different temperature conditions
6	Oxidation test	Mass change (µg), Presence of WO_2 and WO_3	TGA testing at peak operation conditions and helium, complement prior oxidation study
7	Machining	Machinability (surface condition)	Machinability, e.g. via EDM, grinding, polishing/etching/surface preparation, etc
8	NDT	Impurities (pores, etc.)	Quality control, UT, PT?, etc.
9	Metrology	surface roughness, planar/waviness, etc.	e.g. classic metrology, quality control of raw product
	Test n# 1 2 3 3 4 5 6 7 8 7 8 9	SummTest n#Type1Mechanical testing2Microstructure analysis3Fatigue test3Fatigue test4Erosion test5Thermal testing6Oxidation test7Machining8NDT9Metrology	Summary of testsTest n#TypeProperty to be reported1Mechanical testingYield and Tensile strength, elongation at break2Microstructure analysisDensity, purity of W, Hardness, Grain size, etc3Fatigue testEndurance limit4Erosion test/licrobalance weight measurement, Volumetric estimate5Thermal testingThermal conductivity6Oxidation testMass change (µg), Presence of WO2 and WO37MachiningMachinability (surface condition)8NDTImpurities (pores, etc.)9Metrologysurface roughness, planar/waviness, etc.

Prototype target

 To be constructed and tested in North Area T6 on the existing test stand base

Reproduce temperatures and magnitude & type of thermal-induced stresses

- 1. Post-beam testing of mechanical properties and interfaces will be performed
- 2. Potential to cross-check simulations
- 3. Coolant efficiency could be tested on a separate non-beam mock-up

If time allows, two targets will be tested:

- Static Helium concept** & actively cooled He concept
- 3rd option: Water cooled concept (niobium cladding, copper sheets, copper external... TBD)

**In the event of no delay to the North Area long shutdown, the timescale is not possible to have a flowing helium circuit installed and commissioned before the prototype tests...

Prototype target

SY

Accelerator Systems

Static Helium concept (baseline for now)

- W in static Helium. Cooled with a water jacket
- Block spacing defined to match maximum stresses and temperatures and stress type.
 - Challenge with static gas. Requires a LONG cycle time = 7.2 minutes, with intensity 1.5e12 ppp.

Beam parameters considered: Beam σ 1mm to 3mm, Intensity 5e11 to 2e13 ppp

Ta2.5W cladding – LOCA

 (Loss-of-Coolant Accident scenario) LOCA hypothetical scenario used as a criterion for assessing the safety of a nuclear installation during its design phase.

\rightarrow Strong implications on the classification of the facility.

- Thermo-mechanical simulations to determine the temperature evolution of the target in a 2 years scenario after the accident.
- Depending on the assumptions, <u>T > 300 C may</u> be reached for prolonged periods ((O)weeks)

Mena R., Ximenes R.F. and Calviani M. (2022), Loss-of-Coolant-Accident study for the Beam Dump Facility at CERN, NURETH-19 Conference

Ta2.5W cladding – LOCA

- Potentially degradation of the material through oxidation with LOCA.
- \rightarrow Campaign to assess the onset for extensive oxidation and formation of volatile oxides
- Thermogravimetric analyses (TGA) performed for Ta2.5W, TZM and W in the range of 400-800 C under active and inert atmospheres.

Nb-alloys cladding R&D

(b) (d)(a) (e)Measure surface Structure with Cut body into 2 parts Data Finite element Map of residual stress initial residual stress across plane of interest profiles processing calculation across cut surface

Residual stress

The contour method and its different steps to obtain the residual stresses. Adapted from [StressMap 2018]

Resulting left and right parts after EDM cutting (Top) Block 3 and (Bottom) Block 4

Average flatness measurements of the resulting surfaces (Top) Block 3 and (Bottom) Block 4

• Presence of residual stresses (RS) during the manufacturing of the target blocks via Hot Isostatic Pressing (HIPing).

- RS defines the onset for plastic deformation and eventually material failure
- **Purpose:** quantify the RS in the BDF target blocks
- Contour method* employed to measure the RS in the BDF target blocks. Ongoing FE model calibration.

* Prime, M. B., 2001, Cross-sectional Mapping of Residual Stresses by Measuring the Surface Contour After a Cut, *Journal of Engineering Materials and Technology* 123(2):162–168

BDF Target Prototype removal (2020)

Unplug-in Transport to the bunker Unscrew downstream flange Instrumentation wire cut & flange removal Extraction half-shells core assembly Unscrew half-shells Removal top half-shell & first glimpse of the target blocks

BDF Target Prototype removal (2020)

Identification of the blocks and angular orientation with respect to the beam with a marker > Removal of the target blocks for the post irradiation examination (PIE) campaign > Storage of the extracted blocks in a shielded container

NA62 in ECN3 (Today)

• T10 target, K12 beamline and NA62 experiment to be dismantled in LS3

(STI)

n no du otton to novot INDIOOO4

CÉRN