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Also @ NBI2024

• Richard Jacobsson - The search for Hidden 
Sector experiment and its tau neutrino program   

• Jean-Louis Grenard - BDF target station design

• Claudia Ahdida - Radiation protection studies 
and considerations for the ECN3 high intensity 
project

• Matthew Fraser - The new ECN3 high intensity 
facility for the BDF/SHiP experiment and high 
intensity beam transfer



SPS Beam Dump Facility: Comprehensive Design Study, https://doi.org/10.23731/CYRM-2020-002

SHiP Experiment - Comprehensive Design Study report, https://cds.cern.ch/record/2704147

R. Jacobsson

▪ Beam Dump Target / SHiP Target 

➢ Fully absorbe all p+, maximize production of charm and beauty hadrons & re-

absorption of pions, muons and kaons 

BDF/SHiP Target
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High energy → production of 

charmed and beauty mesons

High ppp & POT → overcome 

small prod cross-section of extra 

rare events of hidden particles

High ρ, Z & A → Maximize p+ 

interaction

Short λ → Force absorption of K & 

π to reduce muon & neutrino 

background

https://doi.org/10.23731/CYRM-2020-002
https://cds.cern.ch/record/2704147


Target requirements

• Physics: 

• high-Z material & with short interaction length

• Fully absorb SPS p+ beam

• Engineering: 

• 305kW power → cooling needs 

• 305kW power → temperature & thermal-induced 

stresses

• High nr of spills & POT → mechanical fatigue & 

radiation damage

• Safety:

• High activation → Remote handling, waste disposal 

considerations, spallation/contamination products…

BDF Target
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Baseline beam parameters of the BDF Target

operation. https://doi.org/10.23731/CYRM-2020-002

Very similar requirements to a 

neutron spallation target & other 

targetry applications

Synergies with other labs are 

being pursued

https://doi.org/10.23731/CYRM-2020-002


Overview of BDF Target design options

5Design considerations for the BDF/SHiP production target | NBI2024

Baseline Design (CDR) – Water cooled, W + TZM  cladded w/ Ta2.5W                                       .

• Pursued during the conceptual design phase

• Prototype + test with beam + Post irradiation examination

- Still some safety aspects to be addressed

- Could be further optimized for physics

Alternative designs currently being studied in the TDR

Enclosed compact 

Cu + W Target

• Removes water from beam

• Keeps physics performance

• Reduces decay heat

- Increases T and stress

W Helium cooled Target

• Removes water from beam

• Better physics performance

• Reduces decay heat & residual stresses

- Conceptually different system!

Baseline-based concepts: with W rolled material, Nb-cladded Target, thin Ta cladding… 

https://doi.org/10.1103/PhysRevAccelBeams.22.113001

https://doi.org/10.1103/PhysRevAccelBeams.22.113001


BDF Target Designs overview
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Baseline Design (CDR) – Water cooled, W + TZM  cladded w/ Ta2.5W                                       .

• Pursued during the conceptual design phase

• Prototype + test with beam + Post irradiation examination

- Still some safety aspects to be addressed

- Could be further optimized for physics

https://doi.org/10.1103/PhysRevAccelBeams.22.113001

Alternative designs currently being studied in the TDR

Enclosed compact 

Cu + W Target

• Removes water from beam

• Keeps physics performance

• Reduces decay heat

- Increases T and stress

W Helium cooled Target

• Removes water from beam

• Better physics performance

• Reduces decay heat & residual stresses

- Conceptually different system!

Baseline-based concepts: with W rolled material, Nb-cladded Target, thin Ta cladding… 

BDF Baseline Target Design

https://doi.org/10.1103/PhysRevAccelBeams.22.113001


Water-cooled, Ta-cladded TZM + W Core

• TZM: Absorbs most of the power. Higher strength, better 

creep resistance, higher recrystallisation temp wrt Mo.

• W: Good radiation damage resistance. Best for physics.

• Ta2.5W: To avoid corrosion-erosion of the core materials

• Cooling: 22 bar, 5 m/s, ~660l/min, ~305kW of heat.

Manufacturing

• Forged TZM and sintered W (single blocks)

• Diffusion bonding with cladding via Hot Isostatic Pressing

BDF Target baseline design

7Design considerations for the BDF/SHiP production target | NBI2024

https://doi.org/10.1103/PhysRevAccelBeams.22.113001

Target Core with reasonable physics 

performance & that allows diluting 

(longitudinally) the energy deposition

13 x TZM blocks (Z=42, ρ=10.2g/cm3)

(580 mm)

5x W blocks (Z=74, ρ=19.3g/cm3)

(780 mm)

D250 mm

BDF Baseline Target Design

https://doi.org/10.1103/PhysRevAccelBeams.22.113001


Post Irradiation Examination

• Design mostly validated but with few caveats

Prototype Beam tests

• Validate manufacturing and test operation at 
identical temperatures & mechanical stresses.

• Reduced diameter (80 mm) prototype. 

• Tested in 2018 on a dedicated slow extraction 
(SX) testbench in the T6 primary beam line in 
TCC2 at CERN. Total of 2.4 × 1016 p+

https://doi.org/10.1103/PhysRevAccelBeams.22.123001
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BDF Baseline Target Prototype + PIE

I. Film 

Dosimetry

II. Metrology & 

Microscopy 

V. Microstructural 

Characterization

III. Ultrasonic 

Testing

IV. Specimen 

Extraction

VI. Mechanical 

Characterization

VII. Thermal 

Characterization

Post-irradiation examination of a prototype tantalum-clad target for the 

Beam Dump Facility at CERN, T. Griesemer, R.F.Ximenes, 

https://doi.org/10.48550/arXiv.2410.01964 (under submission to PRAB)

https://doi.org/10.1103/PhysRevAccelBeams.22.123001
https://doi.org/10.48550/arXiv.2410.01964


➢ Most of the shower develops on TZM and not 
on W → core could be further optimized for 
physics

➢ Water in-beam promotes formation of radicals 
→ safety concerns to be addressed or water 
removed

➢ Decay heat on baseline target is considerable 
& driven by cladding. Possibility of LOCA 
(Loss Of Coolant Accident) poses a critical 
safety risk → Reduce Ta cladding

➢ PIE revealed W quality to be poor → Look into 
more robust W supply

In search of an alternative design
Main motivations
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13 x TZM blocks

(580 mm)

5x W blocks

(780 mm)

BDF Target water 

cooling layout (20bar, 

5m/s)

400GeV/c p+ beam4x1019 POT
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Baseline Design (CDR) – Water cooled, W + TZM  cladded w/ Ta2.5W                                       .

• Pursued during the conceptual design phase

• Prototype + test with beam + Post irradiation examination

- Still some safety aspects to be addressed

- Could be further optimized for physics

Alternative designs currently being studied in the TDR

Enclosed compact 

Cu + W Target

• Removes water from beam

• Keeps physics performance

• Reduces decay heat

- Increases T and stress

W Helium cooled Target

• Removes water from beam

• Better physics performance

• Reduces decay heat & residual stresses

- Conceptually different system!

Baseline-based concepts: with W rolled material, Nb-cladded Target, thin Ta cladding… 

https://doi.org/10.1103/PhysRevAccelBeams.22.113001

Nb-cladded baseline target



Selection of Nb-alloys:
• HIP bondable

• Phase diagrams: Good solubility no 

critical intermetallic phases

• Diffusivity: as much diffusivity into W 

and Mo as Ta. 

• Ductility: Nb identical to Ta

• Compliant with Thermo-mechanical 
conditions

• Promising LOCA improvement

Nb-cladding R&D

*by courtesy of Bangor University
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Temperature after LOCA

Assuming htc=1W/m2.K

Decay heat power

Nb-cladded baseline target



Thermal diffusivity specimens 

▪ Excellent thermal contact has been confirmed for 

all Niobium alloys (Nb, Nb1Zr, C103)

Tensile specimens

▪ Interface strength for Nb alloys higher for TZM than W

▪ TZM core :

▪ Ta foil + HIP: High increased the strength

▪ C103 did not bond without the foil

▪ W core

▪ Higher variation, but it seems no foil increases interface 

strength

Nb-cladding R&D

SEM: Increase of successful diffusion bonding / maximum stresses

I. EBW of 

Capsules

II. Helium 

Penetrant Test

III. 1st HIPing 

Cycle (1200 °C)

VII. Thermal 

Characterization

IV. 2nd HIPing 

Cycle (1400 °C)

VI. Cutting & OM 

at interface

VIII. Mechanical 

Characterization

V. Ultrasonic 

Testing

*by courtesy of Bangor University

w/o foil + HIP:High

w/o foil + HIP:Low

Ta foil  + HIP:High

Ta foil  + HIP:Low

TZM W

U
T

S
 [

M
P

a
]
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Exploring diffusion bonding of niobium and its alloys with tungsten and 

a molybdenum alloy for high-energy particle target applications, T. 

Griesemer, R.F.Ximenes, https://doi.org/10.48550/arXiv.2410.01988

,(under submission to JMR&T)

However, long-lived 

Nb isotopes pose 

challenges for waste 

disposal

Nb-cladded baseline target

https://doi.org/10.48550/arXiv.2410.01988
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Baseline Design (CDR) – Water cooled, W + TZM  cladded w/ Ta2.5W                                       .

• Pursued during the conceptual design phase

• Prototype + test with beam + Post irradiation examination

- Still some safety aspects to be addressed

- Could be further optimized for physics

Alternative designs currently being studied in the TDR

W Helium cooled Target

• Removes water from beam

• Better physics performance

• Reduces decay heat & residual stresses

- Conceptually different system!

https://doi.org/10.1103/PhysRevAccelBeams.22.113001

Enclosed compact Cu + W Target

Enclosed compact 

Cu + W Target

• Removes water from beam

• Keeps physics performance

• Reduces decay heat

- Increases T and stress

Baseline-based concepts: with W rolled material, Nb-cladded Target, thin Ta cladding… 
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Cu+W target : 
• Removes water from beam path (radiolysis)

• Keeps physics performance

• Reduces decay heat

- Increases T and stress

beam

Enclosed compact Cu + W Target

Cu-SS HIP bonding for the 

SPS internal dump (TIDVG5)

Design considerations for the BDF/SHiP production target | NBI2024

Hot isostatic pressing assisted diffusion 

bonding for application to the Super Proton 

Synchrotron internal beam dump at CERN, 

S. Pianese, A. Perillo Marcone et al, 

https://doi.org/10.1103/PhysRevAccelBeam

s.24.043001

https://doi.org/10.1103/PhysRevAccelBeams.24.043001


Alternative designs: W Helium cooled Target
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Baseline Design (CDR) – Water cooled, W + TZM  cladded w/ Ta2.5W                                       .

• Pursued during the conceptual design phase

• Prototype + test with beam + Post irradiation examination

- Still some safety aspects to be addressed

- Could be further optimized for physics

Alternative designs currently being studied in the TDR

Enclosed compact 

Cu + W Target

• Removes water from beam

• Keeps physics performance

• Reduces decay heat

- Increases T and stress

W Helium cooled Target

• Removes water from beam

• Better physics performance

• Reduces decay heat & residual stresses

- Conceptually different system!

Other concepts: Baseline with W rolled material, Nb-cladded Target,… 

https://doi.org/10.1103/PhysRevAccelBeams.22.113001
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Helium cooled blocks (without cladding)
• Removes the high stress regions of the baseline design (Ta cladding)

• Allows higher surface block temperatures (no risk of boiling)

• Removes radiological concerns with the water 

• All core material is W (good for physics)

- But HTC is lower

- New cooling system complexity and cost

ESS
2024

BDF LBNF 
2023

Inlet Pressure 11 bar 16 bara 4.5 bar

Swept vol. flow rate 1.6m3/s 0.13-0.15m3/s 0.076m3/s

Target deposited heat 3MW 305kW 35kW

BDF W Helium cooled Target
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BDF He system parameters

Thermal Power 305 kW

Inlet Pressure 16 bara

Pressure Drop <2 bar (high estimate)

Mass flow 345 – 400 g/s

Volume flow 0.13 -0.15 m3/s

Inlet temperature 30 °C

Outlet temperature 200-170 °C

Heat transfer coefficient 1000-2000 W/m2/K

Ø250mm

to

Ø362mm!

17 to 740 mm

Gaps 

4mm

W

BDF Target. Coolant by Gaseous helium, ~200m/s.

3 or 4 channels in parallel.

P+



• Compressor skids - 12/15 bar(g)

• Rotary lobe compressor.

• Oil free, magnetic coupling. 

• 3 heat exchangers (Water/He(g))

• Shell and tube construction. 

• Demineralised water on primary side

• Filtration 

• HEPA/Active carbon filter

• Filling and pressure maintenance system

• Vacuum with turbomolecular pumps + bottle racks w/ 

pressure reducers

• Inline gas spectrometer

• Purification system: Cryogenic Low Temperature Absorption 
(LTA)

• Flanges (w/ metallic gaskets), Globe valves, 304L piping, etc

Design considerations for the BDF/SHiP production target | NBI2024 17

BDF W Helium cooled Target
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Design approach
• Cooling station & target have been considered together for system temperatures and pressures

• Design approach has included Defining Design limits 

❑ Stress

❑ Fatigue

❑ Block Temperature

❑ Surface temperature (e.g. limited oxidation)

❑ Irradiated properties

• Applied these limits to target block position optimisation

BDF W Helium cooled Target
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❑ Used safety margins >2 on 

irradiated (degraded) material 

properties at 2dpa. <2dpa expected)

❑ Extrapolation and rule-of-thumb 

factor used to obtain irradiated fatigue 

limits due to lack of data

Whole 

target

Limited by 

Stresses
Limited by Surface 

Temperature
Limited by 

Stresses
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Operational conditions

BDF W Helium cooled Target
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Temperature (°C)

BDF operational conditions

Target design  lifetime 5 years

Max dpa 1.6 to 1.2

Max He implantation 220 to 143 appm

Max stresses 150MPa

Max bulk temperature 400°C

Max W-to-He surface 

Temperature

350°C

Beam parameters
Same as for Baseline, except 

beam size

P+



The Core blocks
▪ W sheets, HIPed together with interlayers of 

~50um Ta foil (or other – to be explored)

▪ → Improved mechanical properties 

compared to Sintered blocks used for CDR.

▪ Using W sheets thickness 10mm ±5mm

▪ → As thick as reasonably possible with the 

best mechanical properties.

▪ Ta interlayer foil 

▪ → builds on previous HIPing experience* 

▪ Options of joining being investigated: 

- Hot Isostatic Pressing

- Vacuum Hot Press (used at SNS)

- Spark Plasma Sintering (used at SY)

- Tungsten Powder Injection Molding.

- Electron Beam Tungsten Rapid Prototyping

20

Drivers:
❖ Must be clad for HIPing joining process
❖ Don’t want cladding: high stresses at the cladding
❖ Don’t want cladding: Ta produces lots of decay heat
❖ Do want cladding at circumference: Compressive stresses beneficial to W sheets
❖ Do want cladding : Protective layer against oxidation / corrosion-erosion

Capsule may be partially/fully machined away after HIPing.

No 
encapsulation

Full 
encapsulation

Circumferential 
encapsulation

Helium 
coolant

50um Ta 
interfoil (or 

other)

W Sheets

Ta capsule 
(or e.g. SS)

*“Application of hot isostatic pressing (HIP) technology to diffusion bond refractory metals for proton beam targets and absorbers at CERN, ” J. 

Descarrega et al.; Material Design and Processing Communications. 8 August 2019 https://doi.org/10.1002/mdp2.101

BDF W Helium cooled Target

Design considerations for the BDF/SHiP production target | NBI2024

https://doi.org/10.1002/mdp2.101


• To be constructed and tested in NA T6 on the existing SX test-stand

• Staged approach with tests in 2025 and then 2026:

Prototype target design

21

BDF Prototype Target(s)
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2025 – Static He, W Target

• Few O(50) shots → pulse temperature 
& stress conditions. Low activation.

• W-W integrity

• Thermocouples performance

• FEM benchmark

• (possibly) outgassing measurement

• Light PIE in YETS25/26

2026 – Actively He-cooled, W Target

• O(2000-3000) shots→ SS + pulse temperature & 
stress conditions. More data.

• W-W integrity (complementary, building up on 2025 
tests & material R&D). Low cycle fatigue. 

• He skid operational experience. 

• High speed He +Temperature effects on W

• FEM/CFD benchmark

• Comprehensive PIE >2026

• 2025 provides pre-validation and earlier inputs for technical specification & ensures at least some level of 
testing is done (2026 is a short run!)

• 2026 builds on top of 2025 material R&D and beam tests. Provides a comprehensive testing/validation of the 
target core & cooling system



Prototype target
2025 - Static Helium concept

Prototype target design
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P+

2018 BDF prototype at 

CERN’s NA SX test-bench

BDF Prototype Target(s)



Prototype target design
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Prototype target
2025 - Static Helium concept

Temperature (°C) Max P stress (MPa)

HTC 10

1.3e12ppp. 720s/c

P+

BDF Prototype Target(s)



• A water-cooled baseline design exists with a core of TZM and W.

• Sound design, yet with potential for physics optimization and with some radiation protection caveats

• W material quality used in the 2018 prototype was not good

Following HI-ECN3 project approval and start of TDR phase

• Multiple alternative designs explored in view of mitigating water radiolysis, decay heat and improve physics 
performance. 

• He-cooled target most promising option. Being explored in detail. 

• Presently tackling

• Definition of core segmentation taking key metrics and safety margins

• Overall Target design

• Material R&D for the W base material and bonding of the assembly

• Detail design of a prototype to be tested with beam in 2025 & 2026

• Design of the cooling station 

• Addressing Radiation Protection aspects 

Conclusions & outlook
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home.cern
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WP3 – Target & BIDs: Planning (key dates)

26

TDR phase

TDR phase (main activities) – (2024-mid 2026)

1) Target (& BIDs) conceptual design followed by detailed design

2) Prototype(s) Target Design, construction and beam tests

3) Material studies, R&D and Procurement

Production phase – (2026 – 2030)

1) Detailed Design phase

2) Procurement & production of components and systems

3) Tests/dry-run, installation activities

4) Material tests/PIEs

Production phase

Commissioning & 

operation

Design considerations for the BDF/SHiP production target | NBI2024
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Target Options being Considered

Beam Sigma & sweep radius

• 16 mm vs 8 mm (baseline)

• 50 mm sweep radius

Core geometry

• Full 360 ° disks

• 45° 1/8th target slices

Core Size

BDF W Helium cooled Target
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▪ Benefits for stress and fatigue

▪ Requires slightly larger diameter core for physics

▪ To be seen if compatible with beam dilution system

▪ 1/8th target requires diagonal cuts 
to prevent shine path (effective 
but adds complexity)

▪ Or offset cuts (less effective)

Full target 1/8th target

Nominal gaps <0.5mm



Ongoing Material Studies
• Exact tests and number of tests currently being defined

• Testing will be performed on

• The raw W sheets

• The joined blocks (similar to the baseline prototype after HIPing tests)

• The joined blocks post-beam  (similar to the baseline prototype tests)

• In depth testing from 1 supplier & basic characterization from 2 more suppliers

a

28

Priority Test n# Type Property to be reported Additional information

1 1 Mechanical testing Yield and Tensile strength, elongation at break Determine tensile properties of W at different temperature conditions

1 2 Microstructure analysis Density, purity of W, Hardness, Grain size, etc OM, SEM, EDS, Hydrostatic weight measurements, VickersHardness, etc…

1 3 Fatigue test Endurance limit
Series of fatigue tests to determine endurance limit in W and W-W interface, for different 

temperature conditions

2 4 Erosion test Microbalance weight measurement, Volumetric estimate
Series of erosion tests following ASTM : G76 − 13 standard (adapted to BDF conditions) aiming to 

determine the erosion in W at different He stream angle

3 5 Thermal testing Thermal conductivity LFA at different temperature conditions

2 6 Oxidation test Mass change (μg), Presence of WO2 and WO3 TGA testing at peak operation conditions and helium, complement prior oxidation study 

1 7 Machining Machinability (surface condition) Machinability, e.g. via EDM, grinding, polishing/etching/surface  preparation, etc

1 8 NDT Impurities (pores, etc.) Quality control, UT, PT?, etc.

1 9 Metrology surface roughness, planar/waviness, etc. e.g. classic metrology, quality control of raw product

Summary of tests - Raw W sheets 

BDF W Helium cooled Target

Design considerations for the BDF/SHiP production target | NBI2024



Prototype target

• To be constructed and tested in North Area T6 on the existing test 
stand base 

Reproduce temperatures and magnitude & type of thermal-induced 
stresses

1. Post-beam testing of mechanical properties and interfaces will be 
performed

2. Potential to cross-check simulations

3. Coolant efficiency could be tested on a separate non-beam mock-up

If time allows, two targets will be tested:

• Static Helium concept** & actively cooled He concept

• 3rd option: Water cooled concept (niobium cladding, copper sheets, 

copper external… TBD)

**In the event of no delay to the North Area long shutdown, the timescale is 
not possible to have a flowing helium circuit installed and commissioned 
before the prototype tests…

Prototype target design

29

BDF W Helium cooled Target
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Prototype target design
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Core ø50mm W

Coolant: flowing water
Steel can
Static helium

600mm

Prototype target
Static Helium concept (baseline for now)

• W in static Helium. Cooled with a water jacket

• Block spacing defined to match maximum stresses 
and temperatures and stress type.

• Challenge with static gas. Requires a LONG cycle 

time = 7.2 minutes, with intensity 1.5e12 ppp.

Beam parameters considered: Beam σ 1mm to 3mm, 
Intensity 5e11 to 2e13 ppp

Mix of semicircle and full circle blocks
Semi-circle blocks better 

reproduce stress state of 

1/8th target slices.

Full circle blocks better 

reproduce the stress –state 

of the 360° target.

BDF W Helium cooled Target



• (Loss-of-Coolant Accident scenario) LOCA 
hypothetical scenario used as a criterion for 
assessing the safety of a nuclear installation 
during its design phase.

→ Strong implications on the classification of 
the facility.

• Thermo-mechanical simulations to determine the 
temperature evolution of the target in a 2 years 
scenario after the accident.

• Depending on the assumptions, T > 300 C may 
be reached for prolonged periods ((O)weeks)

Mena R., Ximenes R.F. and Calviani M. (2022), Loss-of-Coolant-Accident study for the Beam Dump 
Facility at CERN, NURETH-19 Conference 

Ta2.5W cladding – LOCA 
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• Potentially degradation of the material through oxidation 
with LOCA.

→ Campaign to assess the onset for extensive oxidation and 
formation of volatile oxides 

• Thermogravimetric analyses (TGA) performed for Ta2.5W, 
TZM and W in the range of 400-800 C under active and 
inert atmospheres. 

Ta2.5W cladding – LOCA 

32Design considerations for the BDF/SHiP production target | NBI2024

Visual inspection of the samples before and after 

oxidation for different temperatures.

Ta2.5W

TZM

W

Raw 

sample
800 C at 2 

C/min

800 C at 40 

C/min

400 C at 10C/min x 7 days 800 C at 2C/min 

Inert

Atmosphere

(argon 6.0)

Active

Atmosphere

(50% argon: 

50% air)

400 C 500 C 600 C 700 C

r1 = 10

r2 = 2

r3 = 40 

[C/min] 

r1 = 10

r2 = 2

r3 = 40 

[C/min] 



Nb-alloys cladding R&D
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• Presence of residual stresses (RS) during
the manufacturing of the target blocks via 
Hot Isostatic Pressing (HIPing).

• RS defines the onset for plastic 
deformation and eventually material 
failure  

• Purpose: quantify the RS in the BDF 
target blocks 

• Contour method* employed to measure 
the RS in the BDF target blocks. Ongoing 
FE model calibration.

* Prime, M. B., 2001, Cross-sectional Mapping of Residual Stresses by Measuring the 
Surface Contour After a Cut, Journal of Engineering Materials and Technology 
123(2):162–168

Resulting left and right parts after EDM 

cutting (Top) Block 3 and (Bottom) Block 4

Average flatness measurements of the resulting surfaces

(Top) Block 3 and (Bottom) Block 4

The contour method and its different steps to obtain the residual stresses. Adapted from [StressMap 2018]

Residual stress



Unplug-in  Transport to the bunker  Unscrew downstream flange  Instrumentation wire cut & flange removal  Extraction 
half-shells core assembly  Unscrew half-shells  Removal top half-shell & first glimpse of the target blocks

BDF Target Prototype removal (2020)
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BDF target 

assembly



Identification of the blocks and angular orientation with respect to the beam with a marker  Removal of the target blocks for 
the post irradiation examination (PIE) campaign  Storage of the extracted blocks in a shielded container

BDF Target Prototype removal (2020)
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NA62 in ECN3 (Today)

Existing 

Access Shaft

4×8 m2

• T10 target, K12 beamline and NA62 experiment to be dismantled in LS3

T10

Target

K12 beam line

T10

XTAX
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BDF/SHiP Target & Complex (Future ~ 2030)

37

New 

Service Building

~ 500 – 700 m2

Beam Dilution 

System

New 

Access Shaft

(material only)

8×8 m2

Existing 

Access Shaft

4×8 m2

New Target Complex

containing the Beam Dump Target

13 x TZM blocks (580 mm) 5x W blocks (780 mm)

Baseline Design → To be improved during TDR

WP6,WP7 

+al.

Design considerations for the BDF/SHiP production target | NBI2024


