

SHiP's view of the target system

- Portal to Hidden Sectors! -

Topics covered

- Physics motivation and complementarity
- Physics programme with link to role of target system (define beam dump/fixed target)
- Target and target complex requirements and overall performance of experiments
- Physics qualifiers
- Operational scenario with beam requirements
- Sources of operational issues, failures and adverse experimental conditions
- Exchange of monitoring information

Physics scope

- Outstanding observed features that SM does not resolve, and with no experimental hints / guidance so far!
 - Precision cosmology: Evidence for dark matter is overwhelming
 - Neutrino oscillation: Mass hints to new potentially weak fields
 - Baryon flavour precision: Absence of explanation for matter-antimatter asymmetry
- New Physics should either be very heavy OR interact very feebly to have escaped detection!

"Coupling Frontier" : Any Particles engaging in Feeble Interactions (FIPs) with the SM particles

→ Sharing the Universe already with feebly coupled, not-understood neighbours...!

Standard Model mass scale is particularly interesting to explore... – we know for sure it exists!....

TSAC, CERN – 4-6 March 2024

Exploration of Coupling Frontier

We can produce and do direct generic search for FIPs at accelerators !

→ We need (very) large production of γ , q/g, c, b, W, Z, H !

Similar behaviour $\tau_{FIP} \propto \frac{1}{\epsilon_{FIP}^{\chi} m_{FIP}^{y}}$ for all types of FIPs

→ SPS accelerator energy and intensity unique to explore Light Dark Matter and associated mediators, and v mass generation in region that can only be explored by beam-dump experiment

→ BDF/SHiP experiment's raison d'être

SHiP's physics foundation

- → BDF luminosity with the long high-A/Z target and 4x10¹⁹ protons on target per year
 - → BDF@SPS $\mathcal{L}_{int}[year^{-1}]$ = >4 x 10⁴⁵ cm⁻²
 - → HL-LHC $\mathcal{L}_{int}[year^{-1}]$
- = <u>10⁴² cm⁻²</u>
- → BDF/SHiP *annually* access to yields inside detector acceptance:
 - $\sim 2 \times 10^{17}$ charmed hadrons (>10 times the yield at HL-LHC)
 - $\sim 2 \times 10^{12}$ beauty hadrons
 - ~ 2×10^{15} tau leptons
 - *O*(10²⁰) photons above 100 MeV
 - Large number of neutrinos *detected* with 3t-W v detector target: $3500 v_{\tau} + \bar{v}_{\tau}$ *per year*, and $2 \times 10^5 v_e + \bar{v}_e / 7 \times 10^5 v_{\mu} + \bar{v}_{\mu}$
- → SHiP employs dual-technique detector

Direct New Physics searches For Hidden Sector and LDM

Standard Model measurements and BSM with neutrinos

Visible decay to SM particles

Signatures and background

TSAC, CERN – 4-6 March 2024

R. Jacobsson

Signatures and background

Per spill of 4x10¹³ protons (x 15x10⁶ spills...)

- 1.5 ×10¹² neutrinos and anti-neutrinos through SHiP's fiducial volume
- $O(10^{11})$ muons above 1 GeV/c

- Length/width of target as long as possible
- Distance between target and mgnetised hadron stopper as short as possible (partly solved by tungsten/copper plug)
- Length of hadron stopper (strength of field >1.5T) as short as possible
- Length of muon shield "~as short as possible"

➔ Too short or too long is also not good.....

TSAC, CERN – 4-6 March 2024

A note on requirements 😊

Optimisation of experimental performance and associated requirements?

 \rightarrow Experimental performance \equiv Reachable discovery/exclusion region in mass-coupling phase space

"Signal/background" $\propto f($ [operational parameters], [experimental geometry], [technology], [complexity], [cost])

... And that also depends on the model and the experimental technique !....

... The dependencies are correlated (non-orthogonal axes!)

... The function has many degenerate optima but with different steepness wrt to a given parameter !

- → Requirements in terms of **limits do** exist but they can be very costly not just in money but real ultimate physics
- → Testing a new condition is usually time consuming or wishy-washy...
- → We want to be as "generic and tolerant as possible" to deal with the uncertainty of the unknown !
- → No, this is not a poor apology, welcome to Alice in the Wonderland !...

TSAC, CERN – 4-6 March 2024

SHiP detector in more detail

Physics FoM of the target

- Target design for signal/background optimisation:
 - "induce hard interactions of all protons and secondaries in the densest possible medium":
 - Very thick \rightarrow use full beam and secondary interactions (12 λ)
 - High-A/Z \rightarrow maximise production cross-sections
 - Short $\lambda \rightarrow$ stop pions/kaons before decay
 - → Beam dump or fixed target? Both!

Physics FoM of the target

 $N_{dec}(x) = N_0 e^{-x/\gamma\tau}$

- Proton DIS
- Electromagnetic processes

- Background (μ , ν from π , K, and neutrons)
 - π, K decay: cτγ(π)=7.8γ m, cτγ(K)=3.7γ m
 - Hadronic interaction
 - (Electromagnetic)
- $N_{int}(x) = N_0 e^{-x/\lambda_{int}}$ $\lambda_{int}(\pi) = \frac{1}{n\sigma_{inel}} = \frac{A}{\sigma_{\pi p} A^{2/3} N_a \rho} \propto A^{1/3}$ $X_0 \propto \frac{A}{72}$
- Muon shield will suppress muon flux by six orders of magnitude
- Neutrino background suppressed by helium in decay volume
- Hadron shower containment
 - $t_{max}[\lambda_{int}] \approx 0.2 \ln(400 \text{ GeV}) + 0.7 \sim 1.9 \lambda_{int}$
 - 95% long. containment: $L_{95} \approx t_{max} + 2.5(400 \ GeV)^{1/3} = 20.3 \ \lambda_{int}$
 - 95% radial containment: $R_{95} \approx \lambda_{int} + 2\sigma_{beam} + r_{sweep}$

W: A=184, 2	Z=74, λ_{int} =9.9cr	n, λ _{int} (<i>π</i>)=11.3cm
Mo: A= 96, Z	$Z=42, \lambda_{int}=15.2c$:m, λ _{int} (<i>π</i>)=18.0cm
Cu: A= 64, 2	Z=29, λ_{int} =15.30	cm, λ _{int} (<i>π</i>)=18.5cm
H ₂ 0:	$\lambda_{\rm int}$ =83.30	:m, λ _{int} (<i>π</i>)=115.6cm

(Design guidelines)

- No simple metric but different target configurations can be quite easily compared for fast exploration
- Guidelines:
 - Highest density
 - Shower containment for hadronic component is important up to a radius where π/K decays "miss detector"
 - Cooling gaps are less critical as long as negligible contribution to combined interaction length of π/K
 - Sufficiently long and dense before hadron stopper to stop protons, pions, kaons
 - Beam spot size and sweep radius, see later
- Use FLUKA for checking performance of different options
 - $p, \pi, K, \mu, n(x, y, x, \bar{p})$ to check rates and hadronic shower containment at scoring plane after hadron stopper

Operational scenario with beam requirements

- Annual proton yield expected on target
 - Physics programme relies on 4x10¹⁹ protons on target per year for up to 15 years of operation and <1 event background!
 - → 4-5 x10¹³ protons on target over 1s spills/7s
 - → ~10⁶ spills per year
 - → Up to 3.2 MJ /1s spill , up to 450 kW average beam power
- Joint target/experiment optimization of *nominal* beam parameters
 - Beam sweep on target with 50mm radius (angle w.r.t. beam axis ~0.5 mrad)
 - Beam spot σ ~8-16mm (second order effect)
 - Stability of beam centre axis and sweep $<1\sigma$
 - → Parameters driven by aperture of muon shield and use of impact parameter at target for background discrimination
- Regular (few per year) (re-)commissioning/calibration run
 - Low intensity <5x10¹¹ with no sweep and nominal beam spot
 - ➔ Motivated by alignment run with measurement of reconstruction performance

13

FIP decay background suppression

BDF/SHiP schedule

- ~3 years for detector Technical Design Reports
- Facility implementation starting in Long Shutdown 3 of CERN's accelerator complex
- Important to start data taking ~2 year before Long Shutdown 4
- → Complete detector at the latest in LS4
 - \rightarrow Critical systems in full scale and full physics capability in Run 4

Requirements and objectives in Run 4 (2)

SHiP objectives in ECN3 with beam for Run 4

- 1. Facility commissioning 2031 Q3 (1 month)
 - Parasitic SHiP central system commissioning
 - Physics performance of beam and target systems
- 2. Muon shield commissioning 2031 Q3 / 2032 Q3
 - Performance
- 3. Detector commissioning 2032 Q3 (weeks)
 - Functional control, readout, monitoring
 - Time/space alignment
 - Subdetector performance
- 4. Background measurements 2032 Q3 2033 Q2 (weeks)
 - \rightarrow W/O sweep on target, muon shield off, decay volume under air
 - Rate measurements
 - Reconstruction performance (eff., res.) and rejection power
 - Tune simulation
 - Physics with background from neutrino DIS and muon DIS
- 5. Nominal physics run, reaching few(4?) x 10¹⁹ p/target 2033

TSAC, CERN – 4-6 March 2024

low - high intensity

- low - high intensity

low intensity

Low intensity (2031-2032)

- 5x10¹¹ p/spill or less
- Spill duration >1s (FT 4.8s, 9.6s)
- Nominal beam size ~8mm
- No need for spill quality
- No need for precise beam monitoring

Mid-high intensity (2032-2033)

- 10¹² → 5x10¹³ p/spill
- Spill duration 1s
- Nominal beam size
- Intensity for background measurement to be tuned

low - mid intensity

mid – high intensity

Sources of operational issues and monitoring

- Operational issues:
 - Failures downtime
 - Adverse experimental conditions
 - → Most of these are beam-induced and rather specifies the requirements on the beam requirements
- What is the longterm (physics) performance of the target?
 - Cracking, change of material properties (isotop build-up, DPA,...)
- In terms of beam-related Machine Protection, SHiP is "protected" by limits from the target itself
 - → SHiP detector by construction is not sensitive to beam or target failures in terms of damage ("beam dump")
 - → SMP flag on "commissioning/calibration intensity" = intensity limit with *no beam sweep* on target
- Target related instrumentation with real-time importance to SHiP online system
 - Beam sweep (position σ ~8mm) on target (300 Hz)
 - Target environmental parameters (temperatures)
 - Radiation environment around target
 - (Hadron stopper field)