

Beam Delivery to the Target

Final focus system, instrumentation and dilution

L. Nevay, F. Velotti, D. Banerjee, M. Fraser, A. Gorn, F. Metzger, T. Prebibaj.

21st February 2025

H⁻ (hydrogen anions)

HI CN3

Supercycles

- The injector complex delivers protons to multiple facilities in parallel, typically over ~31 weeks per year
 - $PSB \rightarrow PS$, ISOLDE
 - PS \rightarrow SPS, nTOF, EAST, AD
 - SPS \rightarrow LHC, North Area, AWAKE, HiRadMat
- A supercycle is a sequence of cycles directed to the different facilities

- The supecycles are defined based on the accelerator capabilities & facility requests
- The proton sharing between facilities is achieved using supercycles
- Below is a typical supercycle

See T. Prebibaj's talk for details: https://indico.cern.ch/event/1469359/contributions/6233099/

Time [s]			1.2	2.4	3.6	4.8	6.0	7.2	8.4	9.6	10.8	12.0	13.2	14.4	15.6	16.8	18.0	19.2	20.4	21.6	22.8	24.0	25.2	26.4	27.6	28.8	30.0	31.2	32.4	33.6	34.8	36.0	37.2	38.4
SPS			North Area (SFTPRO)						LHC	LHC filling														Hysteresis / RMS current limits										
PS		SPS	SPS	Ea Ar	ast rea	nTOF	Ea Ar	ist rea	Zero		SPS			SPS			SPS		SPS		MD		Zero	AD		nTOF nTO		East Area		East Area				
PSB	PS	PS	PS	ISO	PS	PS	ISO	MD	PS	PS	ISO	PS	PS	ISO	PS	PS	ISO	PS	PS	ISO	PS	PS	Zero	ISO	PS	ISO	PS	PS	PS	Zero	PS	ISO		
																															Τ.	Pre	bib	ai

SPS Slow Extraction

- The beam in the SPS is excited with a 3rd order resonance in the horizontal plane
- RF gymnastics are performed first to reduce momentum spread and give the most uniform distribution in time

HI ECN3

Shared and Dedicated Beam

- The beam from the SPS is normally split with magnetic splitters twice
 - the vertical position on the splitter determines the sharing ratio
 - the 3 beams are directed onto 3 targets producing 5 secondary beams and 1 left-over primary beam
- For BDF / SHiP, a new set of optics will be used that bypass the splitters without splitting (low losses)

BDF Beam and SPS Supercycle Composition

- Nominal 4 x 10¹³ protons in a 1s spill to BDF/SHiP
 - the 1 s of continuous beam is inside a 7.2 s overall cycle
- A study has shown 5 x 10¹³ protons / spill would mean ~40% more spills to other North Area users
 - MDs this year will investigated SPS intensity limits
 - previously operated at 4.8 x 10¹³ for CNGS (fast extraction)
 - greater North Area availability from a proton-sharing point of view

Nominal Design Parameter	Value
Beam type	proton
Beam momentum [GeV/c]	400
Beam pulse intensity [×10 ¹³ p]	4.0
Spill length [s]	1
Beam pulse power [kW]	2560
Average beam power [kW] (7.2 s)	356
POT [×10 ²⁰ p over 15 years]	6.0

P42 Final Focus & Dilution System

- The beamline "P42" that delivers protons to ECN3 will be modified in the final 200 m
 - quadrupoles will be removed and shifted to create a much larger beam
 - beam size and ratio will be adjustable independently
 - 100 m from last magnet to front of BDF target

600

- A dilution system of N dipoles will sweep the beam in a circle
 - number of magnets / plane depends on possible failures and being studied
- No sweeping and a large beam size is possible, but we must stay clear of the aperture

700

S (m)

800

500

todav

future

Nominal and Accident Scenarios

- Magnets along the beamline can fail
 - change in beam position and size as the field drops
- Beam loss monitors will be placed on each quadrupole to cut the beam quickly if losses high
- A crucial failure mode will be that of the dilution system magnets and power supplies

1 magnet per plane 2 magnets per plane

Patterns on target vary depending on the magnet and exact time of failure

Beam Instrumentation Requirements

Beam Delivery & Experiment

- Beam position during spill
 - can be given after each spill to the experiment
 - ensure sweeping radius
- Beam intensity (< 3% absolute error)

Target

- Beam position to ensure sweeping
- Beam spot size each spill
- Avoid front-mounted diagnostics as complicated to access / maintain
- The strategy for beam instrumentation immediately before BDF is being studied
- Background for the experiment created by matter interaction with the beam being studied
 - muons far from the axis could possibly be captured into the experiment (to be studied)
- We must align the beam axis well w.r.t. the target and know the beam size and sweep radius
- Foresee an instrumentation package 10 20 m upstream of the front of the target
- Diagnostics must give feedback during the spill on a short time-scale
 - avoid slow, high-level software interlocks

Interlocking

- The baseline maximum intensity allowed without sweeping is 2 x 10¹² protons
 - this corresponds to a maximum of a 50 ms spill at the nominal extraction intensity
- Fast interlocks can act on the time-scale of O(100 µs) and cut the SPS extraction
- The current of most transfer line power converters will be monitored
 - this includes the ramp across the spill to compensate for the shift in momentum
- Beam loss monitors (BLMs) will be placed beside each quadrupole and in key locations
- We will consider an independent method of verifying the beam sweeping pattern on the target
 - e.g. an independent current measurement
 - or, 4 beam loss monitors for position via asymmetry of back-splash

Tunnel Names

