

Target conceptual design Beam Dump Facility (BDF) Targetry Systems Advisory Committee (TSAC) #1 *https://indico.cern.ch/event/1488161/*

Mike Parkin, Rui Franqueira Ximenes, Alvaro Romero Francia, Truls Kolstad With contributions from many others

04/Mar/2025

https://hiecn3.web.cern.ch

Specific questions for the Committee

- 1. Do you see any feasibility issues in the proposed designs, ...future production and assembly?
- 2. Do you see any potential showstopper in the FEA / thermo-mechanical calculations, for both nominal and for degraded scenarios? Are there specific topics which have been under evaluated?
- 3. Are the most important operational considerations and accident scenarios being fully addressed? Shall other situations be considered?
- 4. Do the target block R&D plans adequately support the design efforts? Do you see any potential missing aspects that would need to be considered at this stage?
- 5. Are the present target block design options appropriate for long-term reliability should options be included or eliminated? Are the plans for target prototype proton beam testing appropriate and useful to support the target development plans? Shall other complementary tests be explored?
- 6. Do you identify any specific risks in the proposed target designs? Do you see areas for optimisation?
- 7. Is the proposed target instrumentation package suitable for diagnosing operational and potential accident scenarios? Is there any other instrumentation you would suggest?
- 8. Is the current target station design in line with best operational and maintenance practices from the international community? Are there any specific improvements or design options that should be considered at this stage?
- 9. Is the design of the cooling and ventilation systems adequate for the needs of the target systems? Are the safety concerns associated with such a cooling system being addressed and mitigated in the current design? Including maintenance scenarios of the cooling system
- 10. Are radiation protection aspects adequately considered in the design of the complex, both in terms of operation as well as waste management?
- 11. Is the concept for the service cell in the target service building appropriate to tackle the challenges of maintenance and waste packaging of the target systems?
- 12. Do we have to consider additional failure scenarios?

 \rightarrow Slides 6, 9, 11-13, 17, 21, 26, 28-31

 \rightarrow Slides 11-21

→ Slides 6, 13-15, 27, 21, 25, 28-30

→ Slides 6, 9, 11-15, 28-30,

→ Slides 6, 9, 17, 21, 29-30

Contents

Helium Target

- 1. Cladding & Core Material structure
- 2. Helium Modelling Assumptions & Design Methodology
- 3. Helium Simulation Results
 - Target size & beam parameters
 - Radiation damage stress
 - Radiation damage Fatigue

Helium & Water Target

- 4. Comparison
- 5. Helium target 'Backup' options
- 6. FMEA
- 7. Further work
- 8. Key takeaways

W material

Hot rolled W & cladding

- Water cooled target was Sintered & HIPd; pores, crack near cladding & poor UTS
- □ Now looking at Hot rolled W sheets
 - Aiming for improved material properties & reduced risk of cracking
- □ 5mm vs 17mm (later blocks could be SH)
 - Guaranteed properties vs reducing interlayers
- □ Weak point likely to be interface
 - Now bulk W properties much improved
- □ From studies, we expect good thermal contact
- □ Lasagna structure applicable for Helium and H₂O target
- Investigating 3 cladding cases for He target only
- Is cladding needed to keep the laminations together? (& at high irradiation!?)
- Ongoing material testing

Drivers:

- Must be clad for HIPing joining process
- Don't want cladding: high stresses at the cladding
- Don't want cladding: Ta produces lots of decay heat
- Do want cladding at circumference: Compressive stresses beneficial to W sheets

Manufacture: Cladded for HIP, then partially/fully/none machined away

Past study: Post-irradiation examination of a prototype tantalum-clad target for the Beam Dump Facility at CERN, T. Griesemer, R.F.Ximenes, <u>https://doi.org/10.48550/arXiv.2410.01964</u>

Helium Target Modelling

Design methodology

Light optimisation was performed to obtain a model that was then used for investigations & sensitivity studies.

- \Box 16mm beam σ was used
- □ This geometry was then used for the simulations in this talk, including for 8mm beam
- Optimisation will be reperformed when initial material testing / HIP results are available

References:

- [1]CERN EDMS 2648378
- [2] "Vaporization of tungsten in flowing steam at high temperatures", G.A Greene and C.C. Finfrock, Experimental Thermal and Fluid Science, 2001 <u>https://doi.org/10.1016/S0894-1777(01)</u>
- [3]https://doi.org/10.1016/j.jnucmat.2017.12.018
- [4] J. Habainy et al., "Mechanical properties of tungsten irradiated with high-energy protons and spallation neutrons," Jn Nuclear Mat. vol. 514,(2019) 189-195
- [5] J. Habainy et al., "Fatigue properties of Tungsten from two different processing routes," Jn Nuclear Mat. vol 506 (2018) 83-91

Helium Target Results

Simulation Results

Helium Target Overview

- 8mm beam, after pulse \succ
- ø250mm

•

Block temperatures not sensitive to value of

HTC.

Block temperature step-increase 'pattern' is highly dependent on Helium temperature.

> 415.17 400

365 330

Max temperature 415°C-

Simulation Results

Helium Target block – σ 8mm - after pulse

Temperature

Principal stress

Circumferential

tensile stress

Equivalent stress

Target diameter & Beam size

Larger target diameter slightly decreases tensile stresses, increases compressive stresses

Larger beam size reduces T (Δ~50°C) & σ (Δ~10MPa)

Intensity & Beam size

□ Increased intensity to 5e13ppp substantially increases T, Stresses and fatigue. Increase is reduced or

eliminated, with large beam size

σ = 8mm | 4e13ppp

σ = 8mm | 5e13ppp

Radiation reduced Thermal conductivity

- DPA dependent conductivity results from literature
 - □ At 100°C and 400°C
 - Mainly using neutron data at our level of dpa (<1.5)</p>
- We applied the dpa dependent conductivity to the Ansys model...

References - Dpa dependent conductivity in the literature

[1] Data [neutrons]: M.Roedig et al. "Post irradiation testing of samples from the irradiation experiments PARIDE 3 and PARIDE4," Journal of Nuclear materials 329-333 (2004)766-770

[2] Data [protons]: J. Habainy et al. "Thermal Diffusivity of tungsten irradiated with protons up to 5.8dpa," Journal of Nuclear materials 509 (2018) 152-157

Radiation degraded conductivity – Helium target

 \Box σ_{UTS} is where $\sigma_{a} = 0$.

- □ Without material data from fully *reversed cycles* ($\sigma_m = 0$) the Endurance limit (σ_e) is not well known
- □ From the theory, it is therefore not conservative to draw/calculate σ_e using goodman from a small number of non-fully reversed testing points

 \Box When test cycles are fully reversed, R= -1.

□ If fully in tension, 0<R<+1

DPA fatigue damage approach

- 1. Obtain a dpa damage map from FLUKA
- 2. Convert to a damage factor based on literature

DPA	damage factor = stress increase factor
0 to 1	Linear increase from 1 to 2
>1	=2

- 3. Apply the damage factor map to the target stress results
- □ The results for BDF target are represented on a goodman diagram (next slide) with an added general safety factor of ×2
- Key to the validity of this approach is that increasing the maximum principal stress of a node through stress cycles proportionally increases:
 - Mean stresses
 - & Stress amplitudes
- ❑ We believe this approach is conservative (Applying a fatigue factor based on end of life dpa levels is inherently conservative) but not overly conservative.

Available fatigue data							
Unirradiated W	2e6 cycles 3-point-bend tests	•	Ø5mm bar Sintered, rolled & annealed Ø5mm bar Sintered and HIPd	[1]			
Unirradiated W	2e7 cycles		No data				
Irradiated W	No data		No data				

□ FACTOR OF 2: p+ irradiated tungsten: UTS reduced by ½ and saturated by or before 1.3dpa [1].

□ THEN SATURATES: Yield stress increased steeply up to 1dpa, and then gradually up to 23 dpa [2].

LINEAR INCREASE: n. irradiated Tungsten: hardness increased linearly between 0.2 and 1dpa at 600°C [3].

References:

[1]"Mechanical properties of Tungsten irradiated with high-energy protons and spallation neutrons, J. Habainy, Y. Dai, Y Lee, S. Iyengar, Journal of Neuclear Materials 514 (2019) 189-195
[2]"Radiation Effects in a Couple Solid Spallation Target Materials", S.A. Maloy, W. F. Sommer, M.R. James, T.J. Romero, M.L. Lopez, Los Alamos National Laboratory, Los Alamos, NM 87545
T.S. Byun. Oak Ridge National Laboratory, Oak Ridge, TN
[3] Neutron irradiation hardening across ITER diverter tungsten armour D. Terentyev, C. Yin, A. Dubinko , C.C. Chang, J.H. You

Target Fatigue - Helium

With radiation damage penalty

Target Fatigue - Helium

With radiation damage penalty

Stress amplitude when

Comparison of Helium & Water Target

Mike Parkin | Target Conceptual Design

H₂0 & He Targets comparison – Results table

Target design	Coolant pressure	Blocks bulk max T	Blocks Surface Temperature	Stress Max Principal	Stress Equivalent	Chrsitensen if: UTS=300MPa UCS=800MPa	σ _a	σ_{m}	Fatigue limit [1]	YS Sintered&Hip'd for W [2]	SF on yield / UTS	SF on fatigue
	bara	°C	°C	MPa	MPa	-	MPa	MPa	MPa	MPa		
		Whole Target	Whole Target	Blocks 1-14	Whole Target	Blocks 1-14						
Water Cooled	25		-									
Water Cooled	25	150	-	82	82		32.5	49.5	180	330 [YS] at RT *	4	5
Water Cooled	25	160	160		95		45	50	310	190 [YS]at 200°C	2	5.8
Water Cooled	25	180	-		128		58	68	440	370 [YS] at 200°C	3	6.7
Helium Cooled (Not clad)	16	415	400	137	243	0.32	43 (unirr')	98 (unirr')		330 [YS] at RT *	2.4	2.6 (unirr') by same metric used above
Helium Cooled 1/8ths (Not clad)	16		400	95	143					330 [YS] at RT *	3.5	
	Target designTarget designWater CooledWater CooledWater CooledWater CooledHelium CooledHelium Cooled1/8ths (Not clad)	Target designCoolant pressurebarabaraWater Cooled25Water Cooled25Water Cooled25Water Cooled25Water Cooled25Helium Cooled16Helium Cooled16	Target designCoolant pressureBlocks bulk max Tbara°Cbara°CWhole TargetWater Cooled25Water Cooled25Water Cooled25Water Cooled25Water Cooled25Helium Cooled16Helium Cooled16	Target designCoolant pressureBlocks bulk max TBlocks Surface remperaturebara°C°Cbara°C°CWhole TargetWhole TargetWhole TargetWater Cooled25150Water Cooled25160Water Cooled25180Water Cooled25180Water Cooled25180Water Cooled25180Helium Cooled (Not clad)16415Helium Cooled (Not clad)16400	Target designCoolant pressureBlocks bulk max TBlocks Surface remperatureStress Max Principalbara°C°CMPabara°C°CMPaWhole TargetWhole TargetBlocks 1-14Water Cooled25Water Cooled25150-Water Cooled25160160Water Cooled25180-Water Cooled25180-Helium Cooled16415400Helium Cooled164001/8ths (Not clad)16400	Target designCoolant pressureBlocks bulk max TBlocks Surface remperatureStress Max PrincipalStress Equivalentbara°C°CMPaMPabara°C°CMPaBlocks 1-14Whole TargetWater Cooled25Water Cooled251508282Water Cooled2516016095128Water Cooled25180128Water Cooled25180-137243Helium Cooled (Not clad)16-40095143	Target designCoolant pressureBlocks max TBlocks Surface TemperatureStress Max PrincipalStress EquivalentChristensen if: UTS=300MPa UCS=800MPabara°C°CMPaMPa-bara°C°CMPaMPa-Whole TargetBlocks 1-14Blocks 1-14Blocks 1-14Water Cooled25Water Cooled25150-8282Water Cooled2516016095-Water Cooled25180-128-Helium Cooled1641540095143	Target designCoolant pressureBlocks bulk max TBlocks Surface TemperatureStress Max PrincipalChristensen if: UTS=300MPa UCS=800MPa σ_a bara°C°CMPaMPa-MPabara°C°CMPaMPa-MPaWater Cooled25828232.5Water Cooled251601609545Water Cooled25180-12858Helium Cooled164154001372430.3243 (unirr)	Target designCoolant pressureBlocks bulk max TBlocks remperatureStress Max PrincipalStress EquivalentChristensen it: UTS=300MPa UCS=800MPa σ_a σ_m bara°C°CMPaMPa-MPaMPaWhole TargetWhole TargetBlocks 1-14Whole TargetBlocks 1-14Blocks 1-14Blocks 1-14Water Cooled25Water Cooled25160160954550Water Cooled25180-1285868Helium Cooled (Not clad)164154001372430.32 $\frac{43}{(unirr)}$ 98 (unirr)	Target designCoolant pressureBlocks bulk max TBlocks Surface TemperatureStress Max PrincipalChristenen it: UCS=300MPa 	Target designCoolant pressureBlocks bulk max TBlocks Surface TemperatureStress Max PrincipalConsistensen future future futureConsistensen future future σ_n Fatigue future futureYS Sintered&Hip'd for W [2]bara'C'CMPaMPa-MPaMPaMPaMPabara'C'CMPaMPa-MPaMPaMPaMPaWater Cooled25'SStress Blocks 1:14'Mole TargetBlocks 1:14'Mole TargetBlocks 1:14'Mole TargetBlocks 1:14'Mole TargetBlocks 1:14'Mole Target'S'S'SWater Cooled251508282'S'S'S'S'S'S'Water Cooled25160160'S954550310'190 (YS) at RT*'Water Cooled25180-128'S5868440'S'O (YS) at RT*'Water Cooled25180-1372430.3243 (unir')98 (unir')'S330 (YS) at RT*Helium Cooled (Not clad)16-40095143'S'SS'S' S'A'S'SHelium Cooled (Not clad)16-40095143'S'S'S' S'A'S'S' S'A'S'S' S'A'S'S' S'A	Target designCoolant pressureBlocks bulk max TBlocks Surface TemperatureStress Max PrincipalChristensen it: UTS=300MPa UCS=800MPa σ_a σ_m Fatigue FatigueYS SinteradkHip'dSF on yield / UTSbara°C°CMPaMPa-MPaMPaMPaMPabara°C°CMPaMPa-MPaMPaMPaMPaWater Cooled255849.5180 $\frac{330}{[YS] at RT^*}$ 4Water Cooled25160160954550310 $\frac{190}{[YS] at 200°C}$ 2Water Cooled25180-1285868440 $\frac{370}{[YS] at 200°C}$ 3Water Cooled25180-1372430.32 $\frac{43}{(unir')}$ 98 (unir')330 [YS] at RT*2.4Helium Cooled (Not clad)1640095143 V V V V V

https://e-publishing.cern.ch /index.php/CYRM/issue/view/106/pdf_7

Ta2.5: W. Martienssen, H. Warlimont. "Refractory metals and alloys". In:Springer Handbook of Condensed Matter and Materials Data. Springer, 2005. Chap. 3.1.9 [2] YS, UTS from CDS referenced as:

Fraunhofer IFAM.TaW-clad Refractory Metals. Internal communication. 2017.

Plansee GmbH.TZM Measurements. Internal communication. 2018.

W: J. Habainy et al. "Fatigue properties of tungsten from two different processing routes". In: J. Nucl. Mater. 506 (2018), pp. 83–91.

Target baseline selection Pros and cons

Pro / manageable
concerns / low riskMedium / substantial
concerns / medium riskCon / large concerns / high
risk

Cladded version of helium target not yet fully analysed

Target Selection Decision

The BDF Target team has selected the Helium cooled option as the preferred option (so far).

This is due to the Design mitigating or improving on the following issues:

>Improved physics production \rightarrow From all W target

- \blacktriangleright Improved background \rightarrow From replacing water with Helium in the coolant channels
- \succ Lower activation of coolant \rightarrow Due to removal of water from the beam shower
- > Potential to improved LOCA situations. \rightarrow Potential for removing Ta cladding

Using a helium system does come with risks:

Increased leak rates & additional risk in procuring items such as compressors, valves, seals etc for helium at elevated temperature and pressure.

Backup options, failure modes & Future work

Helium Target

Backup target design options

Optional areas to benefit target

Positive impact	
Small positive impact	
Neutral / negligible impact	
Small negative impact	
Negative impact	

Proposed change to benefit target mechanics	Impact for physics	Impact on target thermal / mechanical	Impact on target fatigue	Impact on target manufacture

FMEA

- FMEA was performed for HL-LHC beam dump this model and experience will be used as a guide for performing FMEA of BDF target
- ***** At beginning of process very much ongoing

Number	Category	Function	Upstream influences	Downstream effects	Failure mode	Failure cause	Likelihood	Effect on TDE operational requirement	Effect severity	Detection mechanism	Probability of detectic	Overall severity (max = 3
1	4 Operation	4.02.01 Absorb all HL-LHC	Failure scenario beam absorption	Thermal shock Safety	Under absorb beams	Reduction in absorbing material density	5	Less beam energy absorbed by dump. Higher activation of shielding. Possible risk to	5	Could be detected with endoscopy during periodic inspection, but not	6	150
18	3 Failure	3.01.01 Resist failure scenarios during HL operation (2 MKBH missing)	Parameters of failure scenario	Beam absorption Energy density & temperature rise Differences to load on containment Different response to nominal	Under-resist failure scenarios	Partial damage to materials. Insufficient material strength/temperature resistance.	5	Dump degrades faster and has shorter Ufetime	5	Could be detected with endoscopy during periodic inspection, but not proven. Has been proven that BLMs currently not capable of detecting damage to core.	6	150
10	6 Thermomec hanical resistance	6.03.01 Resist thermal shock (stress gradients and strain rates) induced by beam impact.	Thermal shock - nominal and accidental beam impacts	Configuration of dump changes Containment Measurement of dump displacement	Under	Local plastic deformation or fissures. Design issue or unforseen stress states.	4	Reduction in life. Dump may need replacement before end of service.	5	Pressure sensor, LDV, LVDT, visual inspection. Not clear whether life- limiting damage could be detected by these methods.	7	140
18	3 Failure	3.01.01 Resist failure scenarios during HL operation (2 MKBH missing)	Parameters of failure scenario	Beam absorption Energy density & temperature rise Differences to load on containment	No	Catastrophic failure of core or containment	3	Dump has to be replaced	6	Not detectable	7	126

FMEA example: HL-LHC-beam dump

Timeline

Expected Steps

- 1. Systems description
 - 1. Interviews
 - 2. lists
 - 3. Interfaces
- 2. Functional requirements
- 3. Functional modeling
 - 1. Systems tree functions
 - 2. Systems context diagrams
- 4. Failure modes and effects
 - 1. Workshop
 - 2. FMEA results
- 5. System breakdown (optional)
- 6. Quality Function Deployment analysis (optional)

29

Target fa FMEA to be Main concern	ilure sce done in future as shown here			LowModerateHighUnacceptable	
Failure decscripiton	System requirement affected	Consequence	Likeli- hood	Severity	Action to compensate?
Target core delamination / disintegration		5. Hotter block – target damage, Major increased species release, target disintegration	2	10	Experiment affected / replace target
Tungsten chip / dust release into helium		5. Major increased species release	2	10	Monitor / replace target
Cooling channel blockage	Reduced target cooling efficiency	4. Hotter block – target damage, increased species release	1	4	Reduce beam power
Helium leak path in target	Reduced target cooling efficiency	2. Hotter block – target damage, increased species release	4	8	Reduce beam power
Small helium leak to vacuum vessel	Reduced cooling efficiency	2. Hotter block – target damage, increased species release	4.	8	Increase helium 'top up'. Reduce beam power.
Major helium leak to vacuum vessel	Reduced cooling efficiency	4. Hotter block – target damage, increased species release	2	8	Experiment affected / replace target

Further work ongoing

What ifs? – Cladding

- What if material results / Ta interlayer is particularly weak?
- What if core blocks are prone to delayering?
- What if highly irradiated W crumbles?

Areas for more detailed study in the coming months

- LOCA
- Continue Cladding plasticity

Fatigue

- w.r.t shear/lamination planes
 - Is $\sigma_{max principal}$ direction same as greatest σ_a ?
- 16mm beam include lower dpa! of 1.2!
- Pulse structure (4 revolutions /s) contribution to fatigue →waterfall analysis

- Mechanical calculations of wider assembly:
 - Vessel & Beam window calculations
 - Weight of assembly, rollers etc
- CFD of full model (ongoing)
 - Optimise fluid channel temperature step changes
 - Include gradient of HTC & He temperature on Stress calcs

Realistic pulse supercycles

• Work so far shows detrimental contribution to fatigue

		Future optimisation pro	ocess	
Material testing results & initial 2025 prototype results	re-optimsation of core thicknesses, channel structure, & number of channels	Possibly adjust blocks to be repeated thicknesses, all 15mm in shower for example	- re-run of Τ, σ, fatigue analysis	

Summary – Key takeaways (TLDR!)

Helium Target

- 1. Cladding & Block Material structure
- 2. Helium Modelling Assumptions & Design Methodology
- 3. Helium Simulation Results
 - Target size & beam parameters intensity likely not possible unless beam size >8mm
 - Radiation damage stress
 - Radiation damage Fatigue → DPA map approach developed.

Helium & Water Target

 \rightarrow Mixed picture, needs more study

 \rightarrow Lasagna structure. Helium maybe not clad.

 \rightarrow Larger beam size very good. Larger target good. Higher

→Stress, fatigue, temperature limits were based on literature.

- 4. Comparison \rightarrow Helium cooled target is current preferred option
- 5. Helium target 'Backup' options \rightarrow Several options exist for easing target conditions
- **6. FMEA** \rightarrow **To be done in near future**
- 7. Further work \rightarrow Lots! first is updating & incorporating CFD, & Cladding
- 8. Key takeaways

→When initial material testing results / prototype results known, target geometry will be re-optimised

Many thanks

home.cern

Comments on verbal questions at TSAC

Thermocouple location at various depths

Prototype

Full target

TC location 5-10mm from centre sees ΔT >25°C rise due to pulse - (easily detectable)

to centre.

CERN

Die sink tests managed a hole all the way

r= 66mm (beam sweep+2 sigma) sees ΔT =67°C & peaks at 0.2s after pulse end.

- r= 74mm (beam sweep+3 sigma) sees ΔT=28°C & peaks at 0.9s after pulse end.
 - r = 90 mm (beam sweep+5 sigma) sees $\Delta T = 5^{\circ}C$ & peaks at 2.5s after pulse end.

CERN

Technical Discussion - CERN target & JPARC T2K team – 23/7/24

- □ Largest tensile stresses in prototype & TDR are in the same direction (circumferencial direction) this was planned. With compressive stresses in radial direction
- However the larger stress magnitudes in the prototype are largely locally confined to the flat faces. magnitudes are quite different at the circumferencial edge.
- □ The prototype has much larger compressive stresses (at centre)
- **Out of plane stress levels not a concern.**

1/8 slices target has different stress state.

Could be tested in 2026 prototype with semicircle blocks that match the stress state very well.

Matching prototype block

1/8th slices TDR block

