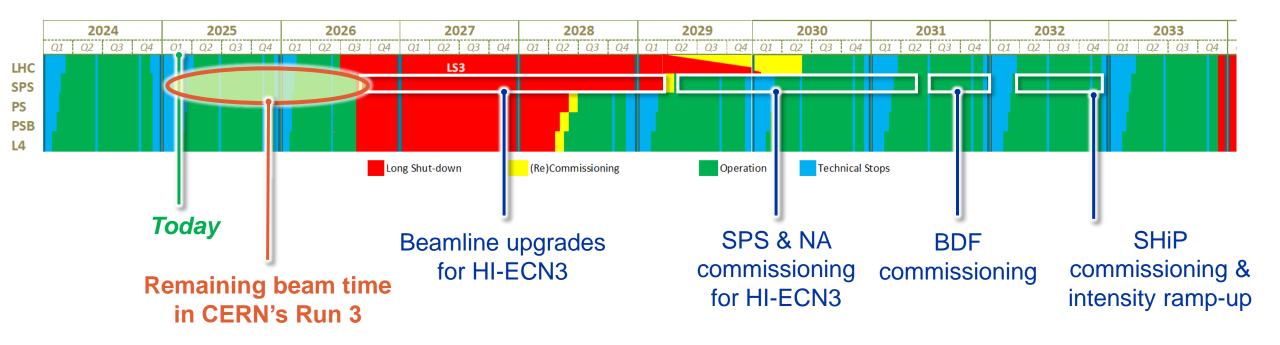


Beam target tests in TCC2

1st Beam Dump Facility (BDF) Targetry Systems Advisory Committee (TSAC) 4th – 6th March 2025

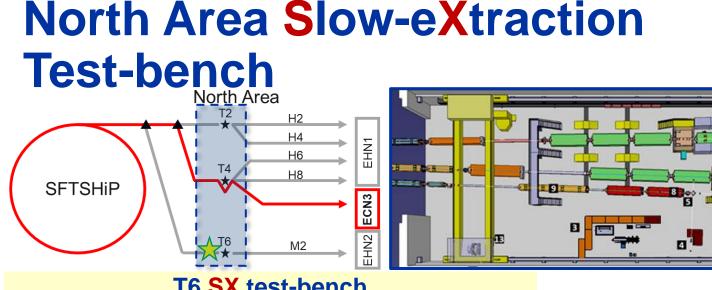
Rui F. Ximenes on behalf of WP3 & HI-ECN3 Project team 04/03/2025

https://hiecn3.web.cern.ch


Take-home objectives of this talk

Recap material challenges and pair importance of material characterization w/ beam tests

- □ Show when (& why), where (& why) we will do beam tests
 - □ Present the strategy and motivation for staged testing
- Overview of the 2025 prototypes target design & scope of testing (& PIE). What will we learn
- ❑ Overview of the 2026 prototype target testing & scope of testing (& PIE). What more will we learn
- Reflection if more (or different) beam tests should be carried out (e.g. post LS3) particularly balancing the risks in the current timeline



CERN's accelerator schedule & Timeline constrain

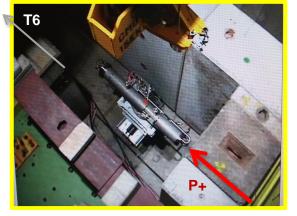
- Only time-compatible opportunity to test prototypes with beam at CERN and feed lessons learnt into final design is in Run3 → 2025 & 2026
- Given that the project was approved in March 2024, timeline for beam testing is very challenging!

T6 SX test-bench

\rightarrow Ease with beam parameters

- 400GeV/c beam as for BDF.
- Slow-extracted with same spill/cycle time structure
- Small and undiluted beam to match energy density
- High pulse intensity (up to 1.5e13) and average power (~15kW w/ current water skid).
- High number of shots, 10000(O) (depending on MD).
- \rightarrow Existing test-bench adapted to BDF-like prototypes.

e.g HiRadMat


\rightarrow Non-ideal beam parameters

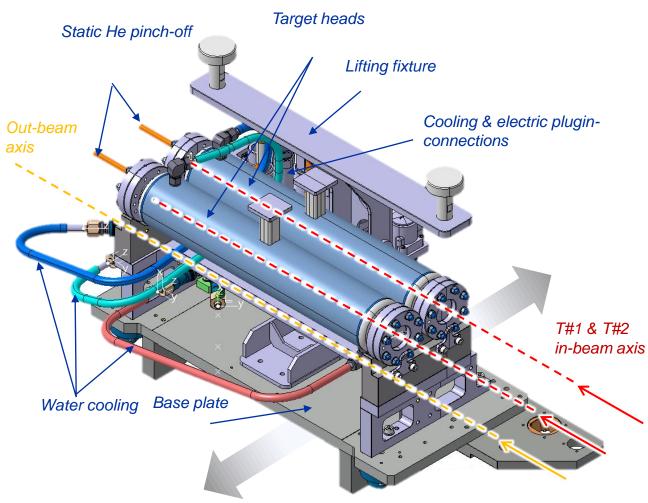
- 440GeV/c beam as for BDF.
- High pulse intensity & fast extraction (288 b @ 2.1e11ppb in 8us) & small beam spotsize (~1mm)
- Matching energy density would be easy, but would induce dynamic effects → BDF has no dynamic stresses
- Small nr of shots 10(O) & low frequency rate \rightarrow cannot reach • steady-state conditions
- \rightarrow Multi-purpose tanks, but would require substantially more design work to adapt

BDF Prototype Target & importance of beam testing

SFTSHIP

- Tested in NA T6 on the existing SX test-stand
- Staged approach with tests in 2025 and then 2026:

2025 – Static He, 2x W Targets


- Few O(50) shots/target → pulse temperature & stress conditions. Low activation.
- W-W integrity
- Thermocouples performance
- FEM benchmark
- (possibly) outgassing measurement
- Light PIE in YETS25/26

2026 – Actively He-cooled, W Target

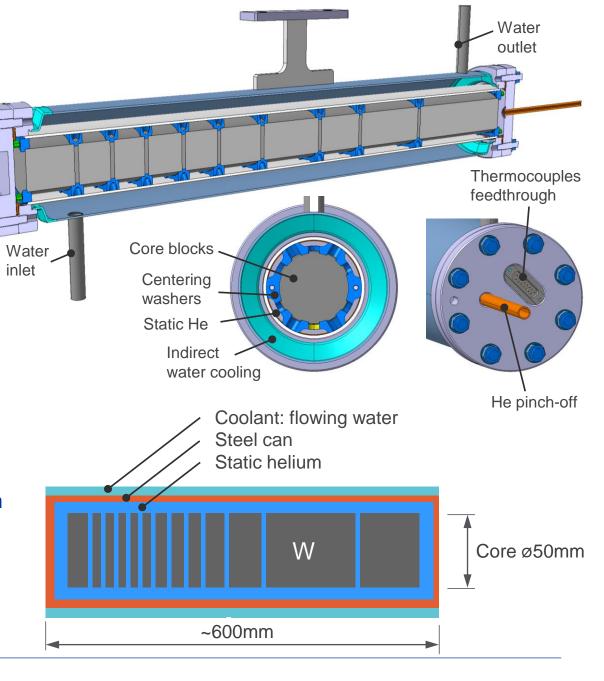
- O(2000-3000) shots \rightarrow SS + pulse temperature & stress conditions. More data.
- W-W integrity (complementary, building up on 2025 tests & material R&D). Low cycle fatigue.
- He skid operational experience.
- High speed He +Temperature effects on W
- FEM/CFD benchmark
- Outgassing/contamination measurements
- Comprehensive PIE >2026
- 2025 provides pre-validation and earlier inputs for technical specification & ensures at least some level of testing is done (2026 is a short run!)
- 2026 builds on top of 2025 material R&D and beam tests. Provides a comprehensive testing/validation of the target core & cooling system

Prototype plugin table (lower table allows transversal horizontal movement)

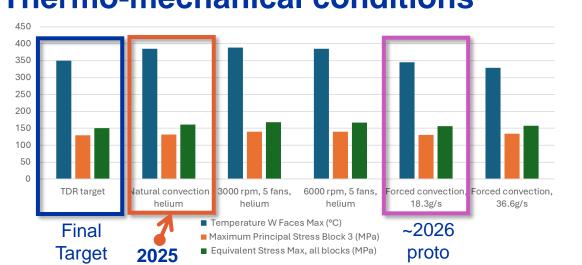
Parameters	Nominal (<u>per target</u>)
Beamline	North Area T6
Particle & momentum	400 GeV/c protons
Spill intensity [e10 ppp]	150 – 450
Spill lenght [s]	1.0
Beam size [σ , mm]	~1
Time between shots [min] (minimum)	~ 5-10 (can be longer! E.g.1h)
POT [e13] / (Nr of shots) / Total time	7.5 – 45 / (50-100) / 8-17h
MD slots (dedicated MDs but shared with other SHiP related studies)	MD 1→July 23rd MD 2→August 13th MD 3→ September 24 th
Installation	June 24 th Technical Stop → Prototype installation, BTV screen and any other pending item July 16th>> Backup

HI-ECN3 Project, Beam Dump Facility TSAC #1, 4th March 2025

Rui F. Ximenes et al. | Beam Target tests in TCC2


Full W, Static Helium, indirect cooling

- Design
 - \rightarrow W in static Helium.
 - → Indirectly cooled with a water jacket
 - \rightarrow 3 Thermocouples per Target (+1 extra)
 - → Block spacing defined to match maximum stresses and temperatures and stress type.
 - Beam σ 1 3 mm, Intensity 5e11 2e13 ppp
 - Poor cooling → low pulse frequency and POT
- Main objective
 - → W-W Interface & cladding test @ different stress/temperature conditions + "Light" PIE / visual inspection
 - 3 different core block combinations



Hiped W w/ partial cladding

HI-ECN3 Project, Beam Dump Facility TSAC #1, 4th March 2025

Rui F. Ximenes et al. | Beam Target tests in TCC2

Thermo-mechanical conditions

Cycle length

(385°C max Temperature

at pulse)

432 seconds (7.2 mins)

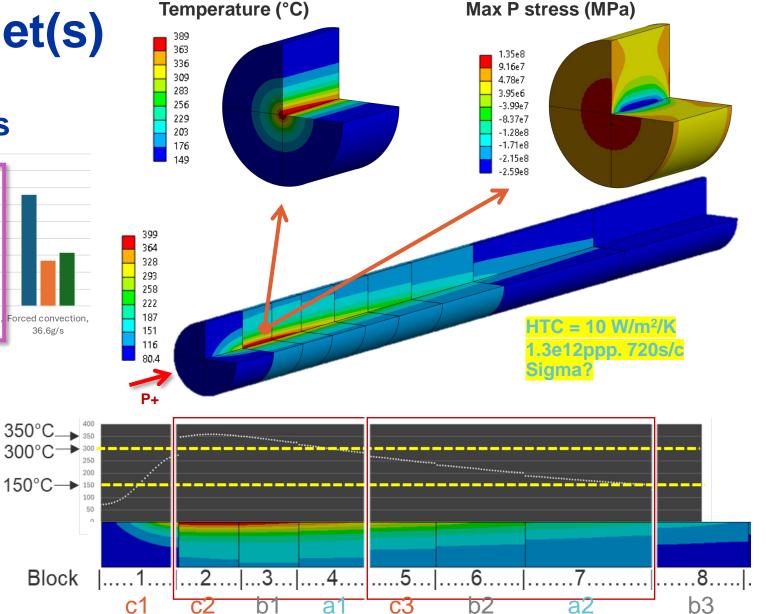
350 seconds (5.8 mins)

200 seconds (3.3mins)

43.2 seconds (0.72 mins)

21.6 seconds (0.36 mins)

proto


natural convection

5 fans at 3000 rpm

5 fans at 6000 rpm

Mass flow 18.3g/s

Mass flow 36.6g/s

ô

or

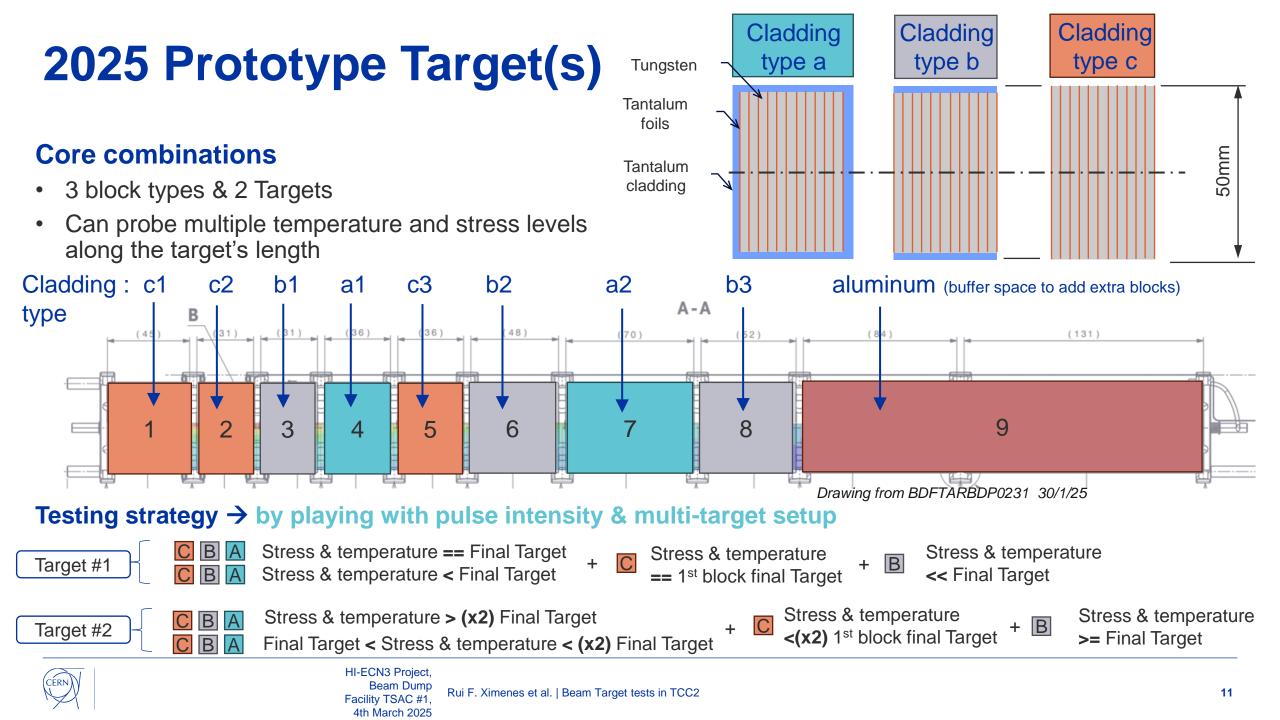
МРа

HI-ECN3 Project Beam Dump Facility TSAC #1. 4th March 2025

Number of 7.2 s

periods

60


48.6 27.8

6

3

Rui F. Ximenes et al. | Beam Target tests in TCC2

300°

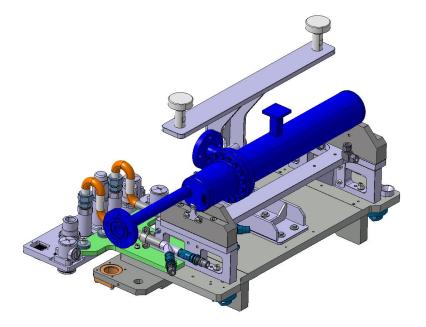
2025 Prototype Target(s) - Status

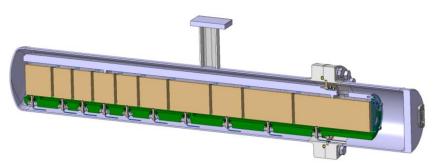
Planning dates

- Fixed SX setup refurbished & re-cabled **done**
- Water skid re-commissioning ongoing
- Target table re-used and adapted almost done
- BTV setup preparation end YETS24/45
- Pre-alignment ongoing
- Target vessel in production April
- Core blocks procurement now
- Core blocks manufacturing ~May
- Instrumentation & assembly June
- Target and BTV installation 24th of June
- Installation backup 16th of July
- Beam Tests MDs 23/7, 13/8, 24/9
- Removal and "light" inspection YETS25/26

Planning criticality: OK, Critical, Very Critical

HI-ECN3 Project, Beam Dump Facility TSAC #1, 4th March 2025

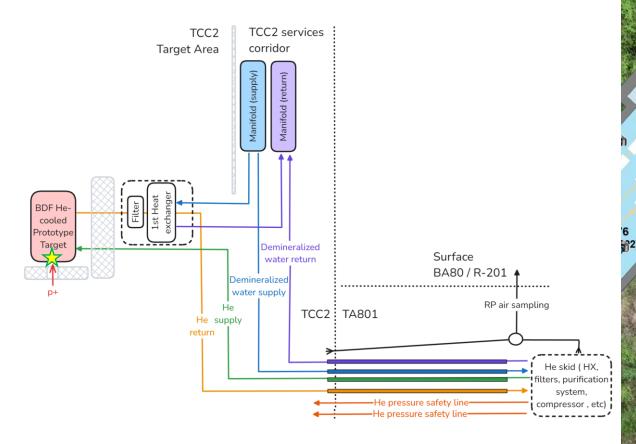

Full W, He-cooled

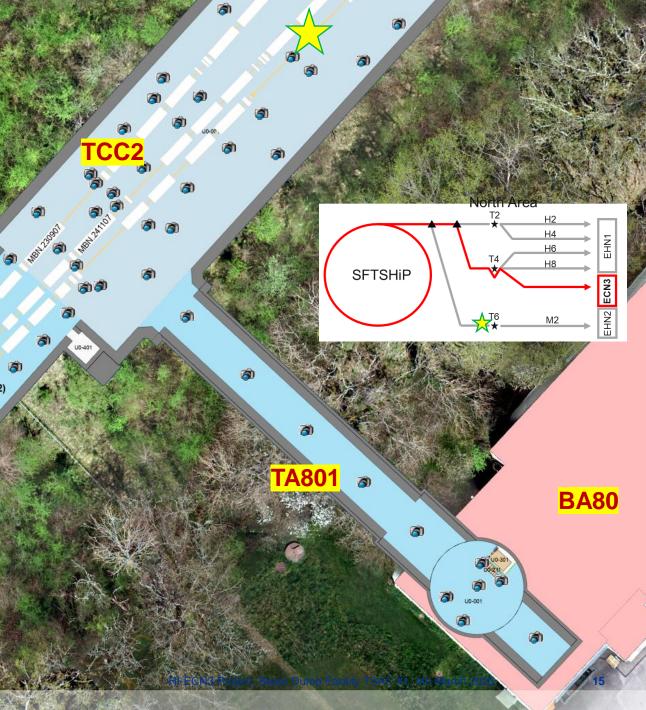

Design – work in progress

- 1x Target
- Small-scale. Design as close as possible to final He-cooled concept
- Likely same core/cladding configuration as 2025 target(s)
- Possibly beam parameters tunned for slightly above/below temperature & stress conditions
- High POT, O(1000s) pulses

(main) Objectives

- Benchmark of models
- He skid operational experience
- Material testing build-up on top of 2025 tests
- Followed by more extended PIE (possibly together with 2025 blocks)





More details in Luca's presentation, to make parallel with Final target design

Layout BDF prototype setup in 2026

Rui F. Ximenes et al. | Beam Target tests in TCC2

Conclusions

Conclusions & brief comments on risks

 Staged testing choice requires extra resources <u>but</u> provides valuable & highly complementary data while mitigating risks on both prototype runs (2025 & 2026)

• 2025 prototype(s)

- 2025 prototype(s) aim at scanning stress & temperature conditions, both above and below design values.
- Mostly a beam material testing campaign of the different core manufacturing ideas
- Design done with production ongoing but in the (very) critical path

What if we cannot make it on time?

- Blocks can be used in 2026 and in offline material characterization campaigns.
- Upgrades and refurbishment of the SX testbench are applicable to 2026, as well as BTV and cabling.

• 2026 prototype

- Builds on top of 2025 material testing with higher POT
- Brings a much closer to final target design, operational experience with He cooling systems. Allows exhaustive FEA benchmark and
 possibly RP studies.
- Currently designing (tight timeline!) & cooling skid procurement ongoing

What if we cannot make it on time? (e.g. either planning or risks associated to having a short 6 months run)

- Skid can be used for offline testing & can be employed as economy/safety skid for the final facility
- Target manufacturing exercise will provide valuable experience in all cases

What if non of the tests happen?

• We would likely have to test at the start of Run4 and "try" to workout the planning to have a change to feed the lessons learnt into the final design

Thank you

home.cern

