

BDF target cooling concepts BDF Targetry Systems Advisory Committee - TSAC

F. Dragoni

04/03/2025

https://hiecn3.web.cern.ch

Agenda

- BDF Target/Proximity Shielding Cooling requirements
- Water vs Helium cooling
- Operational considerations
- BDF Prototype Helium Skid
- Conclusions

BDF Target/Proximity Shielding - Requirements

Beam

3 equipment requiring cooling:

- Target
- 2. Proximity shielding
- 3. Hadron stopper (5 kW outside shielding)

Target user requirements

- Target deposited power: 305 kW
- Cooling medium inlet temperature: 30 °C + 3 K •
- Pressure rating: 10⁻⁴ mbar(a) to PN25 •

Proximity shielding user requirements

- Deposited power: 20 kW
- Cooling medium inlet temperature: 30 °C + 3 K ۲
- Pressure rating: 10^{-4} mbar(a) to PN25 •

Functional requirements

- Compressor redundancy (pending)
- Operation 24/7 for 365 days reduced mode during YETS

Cooling possibilities: Water vs Helium

Demineralised Water Cooling

Main parameters

- Water supply temperature: 30 °C ± 3 K
- Water flow rate: 45 m³/h (target) + 6 m³/h (proximity)
- Pressure rating: PN25

Characteristics

- Supply pressure: 22 bar(g) (target) / 5 bar(g) (proximity)
- Differential temperature (after/before user): < 10K
- 1 heat exchanger
- Water activation + tritium production + potential water contamination if cladding is damaged + water radiolysis
- 9 ion exchanger cartridges (6+1 for target and 1+1 for proximity shielding)

Helium Gas Cooling

Main parameters

- He(g) supply temperature: 30 °C ± 3 K
- He(g) flow rate: 400 g/s (target + proximity)
- Pressure rating: PN25
- Helium purity: > 99.9999% (Helium 60)

Characteristics

- Supply pressure: 16 bar(a)
- Differential temperature (after/before user): 170 K
- 3 heat exchangers
- Tritium produced + possible outgassing (H₂O, CO, CO₂, O₂, H₂)

Cooling possibilities: 3 configurations

Configuration #1 Target: water cooled Proximity: water cooled **Configuration #2** Target: helium cooled Proximity: water cooled **Configuration #3** Target: helium cooled Proximity: helium cooled

Cooling possibilities: 3 configurations

Configuration #1 Target: water cooled Proximity: water cooled **Configuration #2** Target: helium cooled Proximity: water cooled **Configuration #3** Target: helium cooled Proximity: helium cooled

Cooling possibilities: 3 configurations

Configuration #1 Target: water cooled Proximity: water cooled **Configuration #2** Target: helium cooled Proximity: water cooled **Configuration #3** Target: helium cooled Proximity: helium cooled

Water Cooling – Technical Solution – P&ID

1 cooling circuit for target and 1 circuit for • Fi proximity shielding •

- Pumping group 1+1 redundancy
- 1 Heat exchangers (Water/Water)
 - Gasketed Plate Heat- safety type
 - Demineralised water on primary side

- Filtration
 - Cartridge filters 20/50 µm
- Ion Exchange Cartridge 200 L
 - 6+1 cartridges (target)
 - 1+ 1 cartridges (proximity shielding)
 - Nuclear grade resin
- Filling and pressure maintenance system
 - Helium bottle racks with precision pressure reducers

Water Cooling – Pump, heat exchanger, filters

• Pumps

- Magnetic Drive Centrifugal Pumps
- Stainless steel
- Hydro-lubricated bearings
- Manufacturer: CP Pump[®]

Heat exchanger

- Gasketed plate heat exchanger
- Double wall construction possible
- Flanged connections
- Manufacturer: Alfa Laval[®]

• Filter

- Multi cartridge type
- Filtration grade: 20/50 µm
- Manufacturers: Bollfilter®

intra

Water Cooling – Water purification

- Ion Exchange Cartridges
- Max cartridge flow rate: 8 m³/h
- Number of cartridges: 6+1 (target) / 1+1 (proximity)
- Nuclear grade resin: AmberLite[®] IRN9882
- High activation expected
- Technology
 - Mixed bed: 40% cation resin
 - 60% AmberLite ® IRN9766 OH resin
- Manufacturer: Dupont[®]

Helium Cooling – Technical Solution – P&ID

1 cooling circuit for target and proximity shielding

- Compressor skids 12/15 bar(g)
- 3 heat exchangers (Water/He_(g))
 - Shell and tube construction safety type
 - Demineralised water on primary side
- Filtration
 - HEPA gas filters
 - Chemical getters for impurities absorption
- Filling and pressure maintenance system
 - Helium bottle racks with precision pressure reducer
- Inline gas spectrometer
 - Continuous sampling machine
- Vacuum pumps
 - To remove air from the circuit for subsequent filling

Helium Cooling – Compressor

- Rotary lobe compressor
- Pressure regime : <u>13.0/16.0 bar(a)</u>
- Working pressure range: -1/80 bar(g)
- Helium leak tightness: <10⁻⁶ mbar/(l × s)
- Shaft seal options
 - Magnetic coupling
 - Hermetic solution
- Oil lubrication: Oil free
- Pulsation dampened via silencer on outlet
- Manufacturers: Roots (UK)
- Other contacted manufacturer:
 - Aerzen (DE) dry screw compressor used at ESS big footprint the roots machine is more compact
 - Ateko (CZ) two-stage turbo-circulator equipped with radial and axial air bearings used at ESS however our maintenance team prefers to remain in low range of rotation speed
 - Kaeser (DE) screw compressor derived from production line

13.0/16.0 bar(a) - 160 kW - 6.9m x 3.2m

Helium Cooling – Heat exchangers and Filters

- Shell/Tube type common design for all
- Temperature rating: up to 250 C
- Pressure rating: PN25
- Single pass
- Double wall Safety configuration
 - Helium as interstitial gas
- Pressure drop (gas side): 0.05 bar
- Manufacturers: Funke (DE), ETS(CH), MTA(IT)

- Cartridge filter type
- Welded construction
- Filtration: 0.1 µm
- Pressure rating: PN25
- Pressure drop: 0.05 bar
- Flange connections
- Manufacturer: Bollfilter (DE)

Helium Cooling – Helium purification

- Gas purifier IX Media same solution used at ESS
- Technology
 - Absorption by chemical media
 - Impurities permanently trapped
 - Achieved purity: H₂O, O₂, CO, CO₂, H₂ (<100 pptV each), Sulfur Compounds (<1 ppbV)
- 2% overall flow rate circulated through them
- Manufacturer: Entegris®

Helium Cooling – Pipework, flanges and fittings

• Pipework

- TIG butt-welded stainless steel pipework (AISI 304L)
- <u>Warm target outlet</u>: vacuum insulated pipe
- Degreased and cleaned for rough vacuum

• Flanges

- EN 1092-1 B2 flanges. Two choices of gaskets:
 - Spiral wound gasket (Flexitallic®)
 - Captive gaskets
- ISO 10423 (API 6A) Flanges with metal gasket (Helikoflex®)

Valves

- Globe valves with <u>bellow inserts</u>
- Good variety of pressure and temperature ratings
- Flanged or welded
- Manufacturers: Samson®/Flowserve®

Helium Cooling – Additional considerations

- Circuit Filling
 - Create vacuum in circuit (10⁻³ mbar)
 - Series of rough vacuum and turbomolecular pumps
 - Helium filling from bottles

Inline gas spectrometer

- HIDEN HPR-20 Gas analyser
- Inlet pressure range -0.9/2bar(g)
- PPB precision
- Already installed at CERN

• He recovery skid

- Oil-free diaphragm pumps
- Helium from circuit sent to secondary storage
- Used both in operations and when stopped
- Manufacturers: Sera[®], Hofer[®]

Helium Cooling – Initial Integration

Operation consideration: Water vs Helium

Demineralised Water Cooling

Advantages

- Known architecture: years of operational experience
- Lower differential temperature no need of vacuum insulated pipework
- Easier leak tightness

Disadvantages

- Higher supply pressure: 22 bar(g)
- Water activation/tritium production
- Higher level of radioactive waste (ion exchange cartridges, resins)
- Need space in TTC8 outside target shielding to store filters and all cartridges (in-line configuration)
- Leaks will require decontamination
- Requires H₂ recombination system

Helium Gas Cooling

Advantages

- Easy removal of H₂, CO, CO₂, O₂
- Lower supply pressure: 16 bar(a)
- Helium leaks in dynamic confinement and can be monitored

Disadvantages

- No operational experience (Helium skid will help)
- Tritium production/outgassing
- Need specialist maintenance on lobe compressor
- Need of vacuum insulated pipework between target
 outlet and heat exchanger installed in TCC8
- Need space in TCC8 outside target shielding to store filter and heat exchanger
- More challenging leak tightness

Operation considerations: Helium gas leaktigthness

• Design for minimal leak paths

- Maximise welded joints (100% X-rays in critical areas)
- Globe valves with bellows, VCR® fittings
- Metallic gaskets for flanged joints

Leak testing in vacuum and pressurised conditions

- Outside-in (vacuum inside, helium spray on outside joints) at 10⁻⁴ mbar(a)
- Inside-out (pressure inside, filled with helium) at 15 bar(g)
- Pressure testing at 1.43 x Nominal pressure

Max leak rate joint< 10^{-6} mbar l/s $\rightarrow 3.6 \times 10^{-6}$ L/h $\rightarrow 6.4 \times 10^{-7}$ g/h joint Assuming 50 flanged joints $\rightarrow 0.28$ g/year

Helium skid – BDF Prototype in TCC2

• Test skid – representative elements

- Compressor: piston compressor (different technology however same pressure range 13/16 bar(a))
- Filters: same as target station
- Heat exchangers: non safety but similar type shell/tube (cannot validate HX leak detection)
- Chemical getters and gas purification: same as target station
- Flanges: EN 1092-1 B2 with captive gaskets
- Valves: welded valves + globe valves with bellows + VCR® fittings in helium purification circuit
- Vacuum pumps: scroll pump (same vacuum range)
- Instrumentation: same as target station
- Cold source: same as target station (demineralised water)
- Control system: same as target station

• Test skid – non-representative elements

- No helium recuperation skid
- No regulation on heat exchanger downstream the target
- Skid Test
 - 100% VT and X-rays
 - Leak rate tests: vacuum test and pressure test
 - Pressure test

Helium skid – BDF Prototype in TCC2 – P&ID

Conclusions and open questions

Target and proximity cooling station

- 3 technical solutions possible and quite well defined
- Equipment selection
 - Demineralised water cooling: on CERN long operational experience
 - Helium gas cooling: based on similar facilities at ESS and KIT

Helium skid

- Technical solution defined currently in procurement
- Representative of most technological solutions
- Possibility to reuse as backup in final station

22

Conclusions and open questions

- Safety valve release: need for additional extraction flow rate?
 - Small confined volume kept in underpressure with high flow rate?
- Flanged joints
 - Any suggestion beyond what is proposed?

Contamination risks

- Permeability of Tritium through SS 304L at 30/200 °C and low partial pressure can be estimated
- HT, T2 or HTO dominant?
- Any recommendation on SS treatment post installation? Baking and purge after installation?

23

home.cern

