

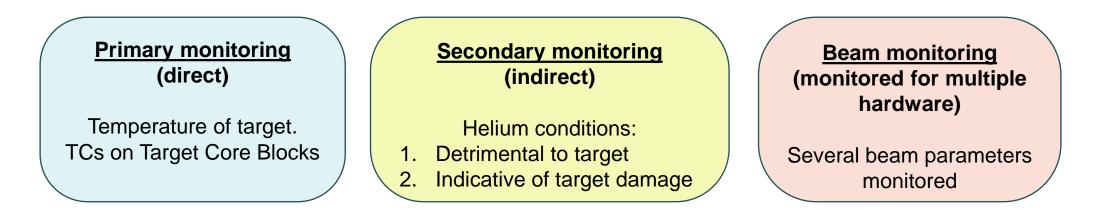
Target Instrumentation Beam Dump Facility (BDF) Targetry Systems Advisory Committee (TSAC) #1 *https://indico.cern.ch/event/1488161/*

Mike Parkin, Rui Franqueira Ximenes, Alvaro Romero Francia, Truls Kolstad With contributions from many others

04/Mar/2025

https://hiecn3.web.cern.ch

Summary – Instrumentation for TARGET health


□ Beam monitoring for physics and non-target equipment damage are not covered in this talk → See talk: Beam

Sensor strategy

□ Sensors used for:

- 1. Beam Interlocks (machine protection)
- 2. Alarms (Operation team, Equipment owner, Piquet team)
- 3. Logging (Online & Offline monitoring of target health & conditions)

 See talk: Beam delivery to target (inc. final focus system: instrumentation and dilution), Laurie Nevay

The design in these slides is preliminary

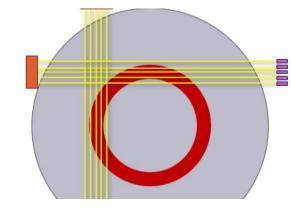
- □ Formal FMEA being performed is foreseen to generate additional monitoring requirements or backups
- In 2025, planned work includes investigating and comparing the approach and sensors to ESS, ISIS-I TS1, ISIS-II, SNS.

Target monitoring requirements Preliminary

Sensors on Sensors on Sensors Target Cooling Station detecting Beam

ltem num'	State to monitor	Sensor	Monitoring description	Off-normal states to detect	Status	Precision in monitored units	Precision in x,y,z	Precision in time	Inter- lock to beam?
1	Core blocks temperature	Thermocouples (K type, Inconel sheath)	2 or 3 per block. One per block embedded in hole from curved outer face, embedded deep into block. One per outer curved face of block	High W temperatures. Margin on T(°C) dependent stress, strain limits. Damage scenarios: delamination, large cracks, blocked cooling channel. Target health: radiation damage, micro cracks, thermal conductivity. Oxidation temperatures.	Required	~ ± 5°C	~ ± 1mm	~2s	Yes
2	Neutronic production	Self Powered Neutron Detector (SPND)	Situated to side of target. Monitors change in fluence	Damage scenarios: delamination, loss of material, large cracks, blocked cooling channel.	Required	1%. Requires study	TBD. Requires study	TBD. Requires study	Νο
3	T distribution in target	TPT type device	In beam, upstream & close to target. Continuously in beam.	Temperature distribution in target Long timescale	Optional. Very preliminary	TBC Requires study.	TBC Requires study.	>30s	No

Self Powered Neutron Devices (SPND)


Measure neutron fluence

- To be placed around the external target vessel
- We have agreement with DONES to develop them with competence to perform data analysis.

SPNDs on n_ToF target

Target position thermometer (TPT) device concept

TCs on rods

- □ Long
 - characteristic timescale
- Prototypic and under analysis whether is needed or not

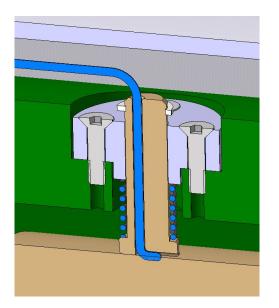
Target monitoring requirements Preliminary

Sensors on Sensors on Sensors Target Cooling Station detecting Beam

ltem num'	State to monitor	Sensor	Monitoring description	Off-normal states to detect	Status	Precision in monitored units	Precision in x,y,z	Precision in time	Inter- lock to beam?
1	Core blocks temperature	Thermocouples (K type, Inconel sheath)	2 or 3 per block. One per block embedded in hole from curved outer face, embedded deep into block. One per outer curved face of block	High W temperatures. Margin on T(°C) dependent stress, strain limits. Damage scenarios: delamination, large cracks, blocked cooling channel. Target health: radiation damage, micro cracks, thermal conductivity. Oxidation temperatures.	Required	~ ± 5°C	~ ± 1mm	~2s	Yes
2	Neutronic production	Self Powered Neutron Detector (SPND)	Situated to side of target. Monitors change in fluence	Damage scenarios: delamination, loss of material, large cracks, blocked cooling channel.	Required	1%. Requires study	TBD. Requires study	TBD. Requires study	No
3	T distribution in target	TPT type device	In beam, upstream & close to target. Continuously in beam.	Temperature distribution in target Long timescale	Optional. Very preliminary	TBC Requires study.	TBC Requires study.	>30s	No
4	Downstream helium temperature	Thermocouple (K type, SS sheath)	In downstream helium flow; in pipework external to vacuum vessel.	Insufficient target cooling. Change to heat transfer rates due to target damage.	Required	~ ± 2.5°C	-	~5s	Yes?
5	Inlet Helium temperature	Thermocouple (K type, SS sheath)	In upstream helium flow; in pipework external to vacuum vessel.	Insufficient target cooling.	Required				No?
6	ΔP across target	Pressure sensors	Upstream and downstream of target helium flow	Changes to pressure drop or elevated pressure drop caused by target damage: Channel blockage, delamination.	Required	50 mbar	-	<i>5</i> s	Yes
7	Helium flow rate	Mass flow meter, e.g. wire meter.	In helium system. In compressor room.	Insufficient target cooling. Large blockage caused by target damage.	Required	3g/s	-	5s	Yes
8	Pressure of helium circuit	Pressure sensor	In helium system. In compressor room.	Insufficient target cooling.	Required	50 mbar	-	5s	Yes
9	Impurities in Helium system.	Mass spectrometer in Helium circuit.	Detect Tungsten Oxides in helium system.	Oxidation/degradation of Tungsten blocks via presence of WO _x . High W surface temperature. Optional (W likely to be gettered by h exchanger		1appm	-	1min	No
10	Beam size & location	Current meters	Current check on dilution system magnets	Beam spot size damaging to target. Beam sweep accident damaging to target.	Required	Requires study. ± 1mm?	±5mm?	0.05s? Delay =0.1s?	Yes
11	Beam size & location	Harp / Grid / Emittance monitor TBC	In beam , upstream of target. Continuously in beam.	Beam spot size damaging to target. Beam sweep accident damaging to target. Information for monitoring target health over time.	US of target Required. DS optional.	Requires study. ± 1mm?	±5mm?	0.05s? Delay =0.1s?	No

R&D of Target Thermocouples

Drilling tests - Prototypes



- Drilling tests performed on prototype blocks
- □ Holes: Ø2mm | depth 25mm
- Drilling unsuccessful > 5mm
- Die sinking successful
- Work is ongoing to characterise the profile shape of the holes.

Drilling tests – full target

- Drilling tests to be performed on full size blocks (die sink)
 - Company contacted
- Holes: Ø2mm

Fixation design

- Sprung fixations for TCs on side of blocks.
- Further work to be done on similar design for TCs at centre of blocks.
- □ For water cooled concept, hole will need to be clad (similar to ISIS)
- □ For helium design with or without cladding, hole can potentially be unclad.

Many thanks

home.cern

Sensor loss [Backup Slide]

□ Sensor loss is part of ongoing FMEA exercise

ltem num'	State to monitor	Sensor	Fault	Probability 1=very unlikely 5=highly likely	1=minor	Severity 1=minor 5=Severe	Intervention	Duration of intervention	Preventative action
1	Core blocks temperature	Thermocouples (K type, Inconel sheath)	Inaccurate reading. Dead TC. TC moved.	3	5	15	Use redundancy from multiple TCs per block. Sensor replacement not possible on highly activated target.	-	3 TCs per block gives redundancy. Test of TC mounting method. Construction by checklist. Test TC readings after construction.
2	Neutronic production	Self Powered Neutron Detector	?	3?	5	15			
3	Beam size & location	TPT type device	Sensor loss	3	2	6			
4	Downstream helium temperature	Thermocouple (K type, SS sheath)	Sensor loss.	1	3	3	Use redundancy from #1,#2,#5. Cross reference to helium circuit readings. Replace TC.	2 hours, wait for access could be weeks?	Use multiple TCs for redundancy. Replace sensors after X years.
5	Inlet Helium temperature	Thermocouple (K type, SS sheath)	Sensor loss	1	4	4	Cross reference to helium circuit readings. Replace TC.		Replace sensors after X years.
6	ΔP across target	Pressure sensors	Inaccurate reading / Sensor loss.	1	2	2	Use redundancy from #1,#3. Cross reference to helium circuit readings. Replace TC.		Replace sensors after X years.
7	Helium flow rate	Mass flow meter, e.g. wire meter.	Inaccurate reading. High flutter. Sensor loss.	2	2	4	Use redundancy from #7. Cross reference to helium circuit readings. Replace TC.	Hours.	Implement both #6 and #7. Replace sensors after X years.
8	Pressure of helium circuit	Pressure sensor	Inaccurate reading. Sensor loss.	1	2	2	Use redundancy from #6, Cross reference to helium circuit readings. Replace TC.	Hours.	Implement both #6 and #7. Replace sensors after X years.
9	Impurities in Helium system.	Mass spectrometer in Helium circuit.	WO _x plates HX, not reaching spectrometer.	2	4	8	-	-	Obtain mass spectrometer sensitive to <1appm.
10	Beam size & location	Current meters	Sensor loss.	2	5	10	Stop beam, replace monitor.	1 days?	Replace / test sensor yearly.
11	Beam size & location	TBC. Harp / Grid / Emittance monitor	Sensor loss.	2	5	10	Stop beam, replace sensor	2 days?	Replace / test monitor yearly.