

BDF target complex design

1st Beam Dump Facility (BDF) Targetry Systems Advisory Committee (TSAC) 4-6 March 2025 - CERN

Jean-Louis GRENARD - Gemma HUMPHREYS – CERN - SY-STI-TCD

with the contribution of all the members of HI-ECN3 WP4

Target Complex design - goal

• Set the scene of the target complex

- Overall arrangement of the target station and integration in the underground cavern
- Shielding configuration
- Vacuum vessel, associated trolley mechanism
- Proximity shielding design and constraints
- Present the maintenance operations that are required
- Target systems failure scenarios and recovery
- Proposed Irradiation stations
- Will introduce more detail talks (Radiation protection, shielding, handling, robotics, safety, cooling, ventilation)

What do we call Target Complex?

The target area

- Target station which contains the target
- The target beam instrumentation
- Associated shielding
- The space to perform target maintenance activities (inspections, replacement, repair...)
- Remote handling equipment (crane, spreaders, mobile robots)
- Confinement(s)

The target complex service building

- Air handling units
- Cooling stations
- Controls systems
- The space to perform target and associated utilities maintenance activities (inspections, replacement, repair...)
- The space to perform post irradiation examination and preparation for target (and other activated components) for final disposal

How we will introduce the target complex

13:35 → 13:55	Target Systems ventilation system integration Orateur: Nikola Zaric
14:05 → 14:20	Opportunities for service cell implementation for waste packaging & autopsy Orateur: Gerald Dumont (CERN)
14:25 → 14:35	BDF Target Complex WP planning Orateur: Jean-Louis Grenard (CERN)
14:40 → 15:10	Q/A time

- Target station located in an underground cavern
- Pure vertical handling not an option due to the limited cavern size and shielding requirements
- No direct access to the target station from service building

HI ECN3

The TCC8 area benefits and constraints

BDF Target complex integration - shielding

HI ECN3

W Helium Cooled vs CDS Design configuration

CDS Design Configuration:

W Helium Cooled Configuration:

BDF Target complex integration – Vacuum Vessel

Primary Functions:

- Minimise activation of the surrounding air
- Maintain vacuum level of 10⁻³ mbars
- House the target, related proximity shielding and relevant cooling components
- Maintain target alignment with the beamline
- Keep beam line vacuum continuity •

Auxiliary Functions:

- Contain a system to ease the removal of the target and shielding
- Provide structural integrity
- Integrate with the safety systems .
- Allow for integration of coolant pipes into the vessel

External Dimensions (without guide rails):

6410 x 2050 x 2965mm

Internal Dimensions:

6210 x 1750 x 2665mm

Volumes:

- **Internal** = $28.96m^3$
- **External** = $38.96m^3$ •

Empty Weight:

~25000kg

Foreseen Internal Load:

~142000kg

Vacuum Vessel Structure

- Current structural analysis performed with stainless steel skin and structural steel external frame
- Structural steel poses issues for SHiP due to magnetic properties in the vicinity of the hadron stopper
- Preliminary analysis performed on current structure, would need to perform again when new material is selected for structure and size frozen

Similar Stainless-Steel vessel designed by Cadinox for UKEA 3590 X 2610 X 4250mm

Vacuum Vessel Connections

Bellows and seals required:

• All located on the vessel door

Functionality of feedthrough bellows:

- Compensate for misalignment
- Cope with thermal expansion
- Allow target removal

HI{ECN3

Further development for optimising the dismantling process (i.e. replacing multiple screws through use of a chain clamp)

2 EPDM profiles mounted on a metal frame and installed onto vessel door (same principle as ISIS target station)

Remotely Operated Flanges Connections

- Current target coolant pipe layout doesn't allow for 2 flanged pipes (DN50) to fit next to each other for the target cooling
- Looking to reposition target cooling pipes so that there will be 1 pipe per remotely operated flange connection
- Total foreseen remote connection numbers: 2 for helium target cooling, 1 for water cooling of proximity shielding (integrated into the same flange connection)
- Also require a feedthrough for target and proximity shielding life monitoring (i.e. thermocouples)

Typical vacuum thermocouples feedthrough

Pipe Configuration Integrated dose: 1-5 kGy/year in this area Residual dose: ~500-800µSv/h compatible with human intervention

Remote flange connection to be implemented (possible manipulation with robotic solution in S. Di Giovannantonio talk)

Connection of Vacuum Vessel with Beam Line

Direct connection between beam line and vacuum vessel (probably a bellow is required)

Proton Beam Window (PBW)

 Study of the proton beam window (PBW) is very preliminary. Full study in the pipeline. Some early considerations/checks:

Requirements

- Separates beamline vacuum (1 to 9 e-3 mbar) from vacuum vessel vacuum (~1e-3 mbar) not a strong requirement
- Confines (safety) in case of leaks in target station
- As close as possible: to the target to avoid creating background (considered < 5m)
- As thin as possible: to avoid heating, creating background and having significant radiation damage
- **But...as far as possible:** to the target for ease of maintenance and reduce window size (and thus thickness to cop with pressure)

Early structural checks (no beam impact considered yet).

- In operation vacuum differential is not a problem. But once venting is done on one side:
 - Ti and Inconel (best for radiation damage) are best candidates to reduce thickness (~1mm).
 - Be and AI are good candidates due to low density but require higher thicknesses (>3-4 mm).
- Venting may be done on each side separately, so shape optimization is limited. Solution could be mixed window setup (e.g. CfC stiffener + very thin Ti window + CfC stiffener).

Reflection

 Line will be equipped with shutter valve. What is the risk/benefit of also having a PBW? Shall we pursue a windowless system?

Proton Beam Window (PBW)

Typical examples of beam window

- LHC-TDE UHV window
- HiRadMat Dump window

Vacuum Vessel Potential Weak Points and Mitigations

Potential Weak Points	Mitigations	
Vessel Door Seal	Every time door is opened, the seal will be replaced	
Internal coolant pipe misalignment with connection to upstream coolant pipes	Installation of bellows and a remotely operated flange connection system	
Seals within the bellow connections	Every time door is opened, the seals will be replaced	
Shielding pool under vessel will become one of the lowest points in experiment and susceptible to flooding in extreme circumstances	Implement a drainage system into base of pool	
All connections through vessel e.g. cooling pipes, thermocouples, vacuum pipe, etc	Placing these as far from the target as possible and all passing through 1 door which can be replaced and opened as and when needed	

Vacuum Vessel FFMEA

Functional Failure Modes and Effects Analysis (FFMEA)

Process of identifying possible failure modes in the functions of the vacuum vessel, causes, effects and prioritise order for mitigation

• Completed defining a list of requirements:

- Functional Requirements
- Performance Requirements
- Implementation Requirements
- System Requirements

• Next step is to detail:

- Upstream and downstream influences
- Failure modes and causes
- Assign score based on likelihood, severity, effect, detection
- Current Conclusions:
 - Many failure modes stem from material degradation \rightarrow material selection and preventive maintenance key aspect to address
 - Thorough planning needs to be conducted for how to maintain target alignment over time and during the installation process
 - All active components should be installed on an accessible/dismountable part \rightarrow the justification for having all connections on the vacuum vessel door

BDF Target complex integration – proximity shielding

- Requires active cooling due to significant energy deposition
- Power to extract from the shielding blocks:

○ **~20kW**

• Must allow for easy removal of the target

Proximity shielding - Cooling Circuit location

Approximation of energy deposited into each block with ANSYS imported from FLUKA:

HI ECN3

Top Shielding					
Advantages	Disadvantages				
Simpler to implement into cooling system	 Cooling connections must be undone to access the target Low contact pressure for TCC* 				
Middle Shielding					
Advantages	Disadvantages				
 Target can be removed without disconnecting cooling In contact with the top and bottom shielding Receives around 50% of the total absorbed energy 	 More features disrupting piping Higher activation of the water 				
Bottom Shielding					
Advantages	Disadvantages				
 Target can be removed without disconnecting cooling Large amount of contact pressure with the middle shielding Simpler to implement cooling circuit 	No direct contact with top shielding				
Cooling location evaluation					

Preliminary findings for material and coolant

Shielding material	All copper		All cast-iron	
Coolant medium	Helium*	Water	Helium*	Water
Thermal conduction between blocks	Best-case	Worst-case	Best-case	Worst-case
Temperatures				
Min [°C]	128.4	30	73.4	30
Max [°C]	164.5	48	271.9	158.1
Avg [°C]	150.4	31.3	153.3	54.6
ΔT [°C]	36.1	18	198.5	128.1

*Helium mass flow rate: 30 g/s which is already quite demanding ~10% of the cooling power for the target

Proximity shielding baseline

- Water cooling
 - Lower complexity
 - Lower cost
 - Easier and more standard implementation for the cooling station
 - Potential water leaks would have to be managed in the vacuum vessel (detection, drainage, material selection, coating)
 - Vacuum vessel will become retention vessel
 - All in-vessel components should be corrosion resistant (everything made of Stainless steel, copper...)
- Copper alloy (Cu-OFE, Cu-ETP or similar)
 - Better thermal conductance
 - Water cooled copper = low temperatures for entire shielding
 - Less concern for thermal stresses and possibly creep

Detail engineering design to start following preliminary thermomechanical assessment

The Magnetized Hadron Stopper Shielding A fraction of the experiment embedded in the target station

Why we would like to maintain our system!

Normal maintenance operations (yearly basis):

- In vessel system inspection
- Removal of Irradiation module

System replacement:

- Target replacement in case of failure or reaching end of life (every ~5 years)
- Proximity shielding exchange in case of failure

Systems shall be designed to be replaceable within a winter stop (~20 weeks)

System reconfiguration/dismantling

BDF Target complex integration extraction

Trolley need to roll out to access in vessel components (target, proximity shielding and possible irradiation module*)

- Vacuum vessel need to be open
- Utilities need to be disconnected
- Trolley need to be extracted (142t)

* Irradiation module introduced later

BDF Target complex integration extraction trolley

- Full stainless steel chain action rollers
 - 'Egyptian' system
 - No rolling element such as bearing
- Designed by specialized company:
 - Number of rollers and configuration (8 rollers foreseen)
 - Prototype stainless steel rollers and rails already at CERN for a test campaign (material selection assessment, test, ageing under harsh environment)
- Typical applications:
 - Bridge sliding supports (salty environment)

Other solutions discarded:

Wheels \rightarrow precise rolling elements

On purposed air pads \rightarrow complex system to operate (floor flatness and tightness)

Push/pull chain mechanism

- Actuator installed on purpose
- Guides and docking station stays in place
- Remotely controlled
- Full stainless-steel chain
- Redundant chains
- Connection of the chains remotely compatible*
- Recovery from failure scenario remotely compatible*

HI ECN3

Target removal tentative sequence

Beam line removal

Beam instrumentation package removal

Collimator shielding removal

Collimator removal

Beam Pipe Removal

Vacuum vessel door lifting + shielding tool installation

Disconnection of utilities and vacuum vessel door unbolting

Vacuum vessel door removal 1/2

Vacuum vessel door removal 2/2

Vacuum vessel open

Transfer rail installation

Push/pull chain mechanism connection 1/2

Push/pull chain mechanism connection 2/2

Trolley extraction 1/2

Trolley extraction 2/2

Upstream shielding partial removal

Proximity shielding upper lead removal

Proximity shielding upper lead removed

Target removal

The following handling steps will be covered by C. Duran Gutierrez

Target removed

Space requirement for target exchange

Final Target Selection and Impact on Target Station

Key Parameters	CDS Design Target	1.5m Full W Target
Target Absorbing Block Dimension	1.36m x Ø 0.25m	1.5m x Ø 0.25m
Overall Tank Dimension	~1.5m x Ø 0.6m	~1.7m x Ø 0.42m
Weight	~2 tons	~2.3 tons
Number of Cooling Pipes	4 (2 water, 2 helium)	2, both helium
Cooling Medium	Inner vessel with circulated water	Circulated helium
Leak Detection Method	Outer vessel injected with static helium	No detection method

- Weight and size both in similar ranges
- Internal layout of proximity shielding will require adaptation
- **CDS design** would require ٠ an additional circuit for He **confinement** around the target – Consequently target would be **more** challenging to handle due to the increased number of pipes and door interfaces
- Full W target **cooled** by helium, reducing risk of contaminated water leak into vessel

Opportunities for parasitic irradiation

Samples placed inside irradiation capsule

- BDF/SHiP offers the unique opportunity to access unprecedented radiation levels in mixed field – allowed due to the specific feature of the experiment
- Priority is given to SHiP, so irradiation opportunities will have to be parasitic to the operation of the complex
- <u>None</u> of the irradiation capabilities shown are part of the target station baseline, but are intended as realistic possibilities and are being proposed

Concluding remarks

- Design approach:
 - Building and developing sets of technological bricks
 - Minimize interdependencies of systems (especially overlapping dependencies)
- Minimize number of systems / connections in the harsh area
- Located connections on a maintainable system
- Using as much as we can return of experience
- Demonstrate robustness of solutions using various method
 - Simulation
 - Prototyping

home.cern

