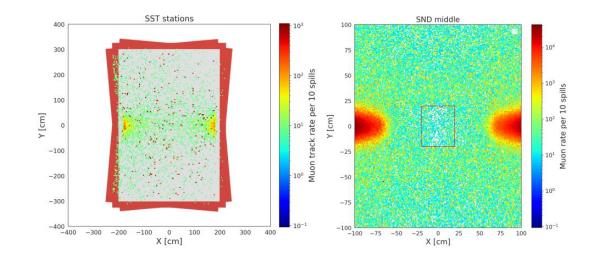


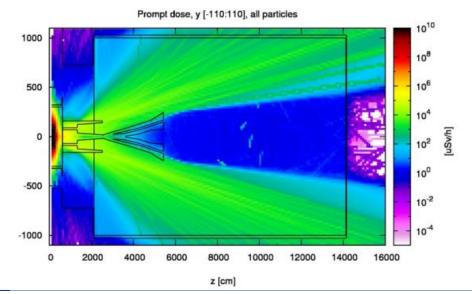
François BUTIN BE-EA

Credits to G. Humphreys, B. Martinez, C. Ahdida, L. Esposito, JL Grenard, R. Jacobson, M. Lazzaroni

Introduction: what for ?

• New target station installed in TCC8 for BDF/SHIP requires large amount of shielding (cast iron, concrete and marble)

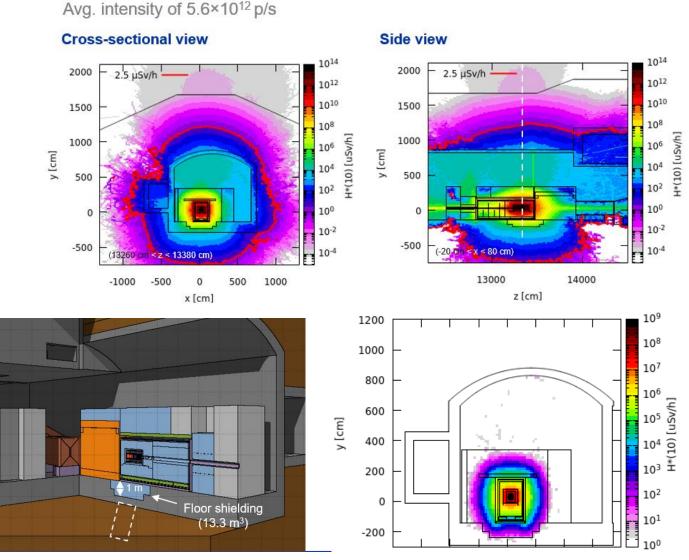

Shielding Requirements - 1


1. Experiments requirements

Keep the flux of particles emerging from the target station into the detector as low as possible (complex optimum to be reached)

Limit the flux into (possibly) super conducting magnets of the magnetic muon shield

Ref: CERN-SPSC-2023-033


Shielding Requirements-2

2. RP requirements

Keep surface within non-designated limits (2.5 μSv/h) during operation

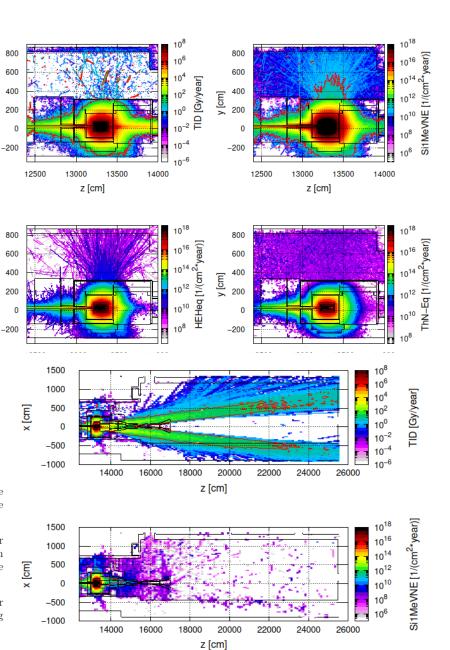
Keep residual radiation downstream target station (SHiP environment) within supervised area limit (15µSv/h)

Limit environmental impact (soil + air activation)

See C. Ahdida's talk for RP details

-800 -600 -400 -200 0 200 400 600 800

Shielding Requirements- 3


3. R2E requirements

Keep radiation dose within limits of «standard electronics» limits

-	R2E Quantity	Upper limit
Cumulative Effects	TID	$1 \div 10 \text{ Gy}/10 \text{ years}$
	Si1MeVNE	$10^{10} \div 10^{11} \ 1/(\text{cm}^2 \times 10 \text{ years})$
Single Event Effects	HEHeq	$3 \times 10^6 \ 1/(\mathrm{cm}^2 \times \mathrm{year})$
	ThN-Eq	$3 \times 10^7 \ 1/(\mathrm{cm}^2 \times \mathrm{year})$

R2E safe area requirements

- 1. Total Ionising Dose (TID)
- 2. Silicon 1-MeV Neutron Equivalent Fluence (Si1MeVNE) Particle fluence weighted by the damage function for silicon. The quantity is used for cumulative effects estimation.
- 3. High Energy Hadron Equivalent Fluence (HEHeq) Proportional to the number of SEUs. It considers fluence of hadrons with energy higher than 20 MeV and neutron of lower energies weighted according to the ratio of their SEU cross section to the one of > 20 MeV hadrons.
- _4. Thermal Neutron Equivalent Fluence (ThN-Eq) Proportional to the number of SEU's due to thermal neutrons. Neutrons of higher energies are weighted according to the ratio of their capture cross section to the one of thermal neutrons.

<mark>с</mark>

[CU]

Credit: Luigi Esposito

Required Shielding blocks listing

Concrete blocks: ~400 m3

Iron blocks: ~180 m3

	BDF		
	needs	TCC2	TCC8
BLOC STANDARD BETON TYPE 421	16		16
BLOC STANDARD BETON TYPE 844	6		4
BLOC STANDARD BETON TYPE 882	2		8
BLOC STANDARD BETON TYPE 884	7		15
BLOC STANDARD BETON TYPE 888	1		13
BLOC STANDARD BETON TYPE 1682	3		9
BLOC STANDARD BETON TYPE 1684	4		35
BLOC STANDARD BETON TYPE 1688	43		15
BLOC STANDARD BETON TYPE 2484	37		
BLOC STANDARD BETON TYPE 2488	2		
BLOC STANDARD BETON TYPE 24168	92		94

	BDF			
	needs	TT7	TCC2	TCC8
BLOC STANDARD SEUL ACIER TYPE 442	5			
BLOC STANDARD ACIER 842 TARAUDE	44			2
BLOC STANDARD SEUL ACIER TYPE 844	8			4
BLOC STANDARD SEUL ACIER TYPE 882	22	130		
BLOC STANDARD SEUL ACIER TYPE 884	32		~5	2
BLOC STANDARD SEUL ACIER TYPE 1682	33	8		12
BLOC STANDARD SEUL ACIER TYPE 1684	45	56	~55	3
BLOC STANDARD SEUL ACIER TYPE 1688	111	52		12
POUTRE 200x200	32			

Special blocs BDF needs

Special blocs BDF needs

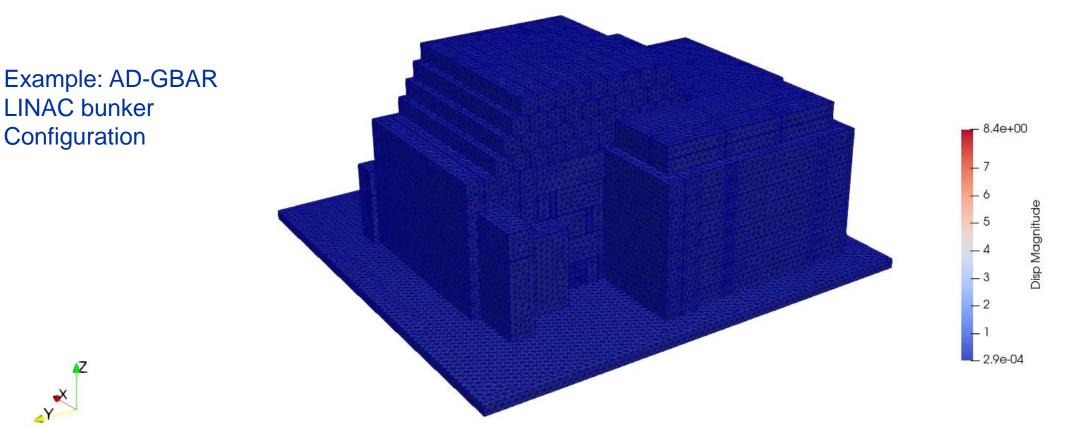
BLOC BETON 1681 special	1
BLOC BETON SPECIAL 3250x1600x800	1

BLOC ACIER 16608 non standard	56
BLOC SPECIAL 55016	12
STEEL BLOCK WITH RABBIT	1

Special blocks: holes, round shape, specific dimensions etc. : to be produced on demand Installation layout not finalized yet

CERN Standard shielding blocks

Raw material specs:	Item	Туре	<u>Weight(</u> Kg)	Dimensions(mm)
		24168	7500	2400x1600x800
Concrete: according to the standard EN 206 Limit to absolute minimum Natrium, Manganese, Magnesium,		23168	7200	2300x1600x800
Limit to absolute minimum Natrium, Manganese, Magnesium, Cobalt, Europium, Caesium, Hafnium, Iridium, Silver, and		1688	2500	1600x800x800
Scandium		1684	1250	1600x800x400
Scandum	Concrete blocks	1682	630	1600x800x200
Or of the many hand the many time many CNL OLC 400 4011 DT		888	1250	800x800x800
Cast iron: spheroid-graphite cast iron EN-GJS-400-18U-RT:		884	630	800x800x400
Better resilience than Laminal Graphite cast iron.		882	325	800x800x200
Maximum cobalt content below 0.10%		844	325	800x400x400
		842	160	800x400x200
All iron blocks need to be painted (corrosion protection) and identified		421	20	400x200x100



Item	Туре	<u>Weight(</u> Kg)	Dimensions(mm)
	1688	7500	1600x800x800
	1684	3700	1600x800x400
	1682	1850	1600x800x200
	884	1850	800x800x400
Cast Iron blocks	882	925	800x800x200
	844	925	800x400x400
	842	465	800x400x200
	822	230	800x200x200
	442	230	400x400x200
	211	16	200x100x100

Stability assessment of the shielding assembly

The assembly scheme will be subject to Finite Element Analysis for seismic assessment by CERN safety department Complex calculation due to nature of pile-up (no mechanical link only friction)

Identification of the most vulnerable mechanisms EQ3 - PGA scaled to 0.5 g

LINAC bunker

Configuration

Most common lifting systems (non exhaustive...)

See C. Duran's talk for handling details

Considered shielding supply sources

Main source is recovery from decommissioned projects:

-Stocks of clean / slightly activated iron and concrete blocks are centrally managed at CERN. Limited quantities can be made available at a cost

-Other recovery possibilities:

Shielding / dump assemblies exist throughout CERN, that can be interesting to recover after decommissioning or reconfiguration: CNGS target, TCC2, TT7 dump, T10 shielding etc.

-Purchase for special cases: Specific dimensions / shapes / large quantities etc.

CNGS target blocks to be possibly recovered

Sustainability of the projet:

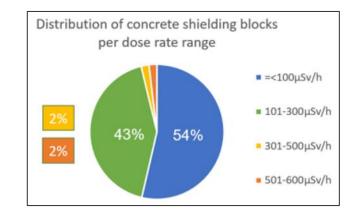
Strong effort to re-use existing activated blocks (economical / environmental interest)

Financial aspect: limit number of new blocks to be purchased

Sustainability aspect: avoid generating more future activated waste by re-using already slightly activated blocks

Intelligent arrangement «hiding» the more activated blocks

Main sources for BDF project: Recover ancient blocks from decommissioned project: -TT7 neutrino beam line dump (iron)


-T10 target station in TCC8 (concrete + iron)

-TCC2 (iron, quantity TBC)

-CNGS target (concrete + marble)

-Radio-active waste recovery

Expected savings, still tentative: ~150 m3 out of 180 m3 of iron ~350 m3 out of 400 m3 of concrete

Recovery from current T10 target station (TCC8)

~15 m³ of standard cast iron blocks (activated)

~400 m³ of standard concrete blocks (activated) Not all can be re-used (special shales needed).

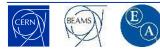
Max dose rate 160 μ Sv/h.

Most will be re-used in situ

Concrete	TCC8			
BLOC STANDARD BETON TYPE 421	16		BERHAN	
BLOC STANDARD BETON TYPE 844	4	Iron	from	
BLOC STANDARD BETON TYPE 882	8	Type of blocks	TCC8-ECN3	
BLOC STANDARD BETON TYPE 884	15	842	2	
BLOC STANDARD BETON TYPE 888	13	844	4	
BLOC STANDARD BETON TYPE 1682	9	882		
BLOC STANDARD BETON TYPE 1684	35	884	2	
BLOC STANDARD BETON TYPE 1688	15	1682	12	
BLOC STANDARD BETON TYPE 2484		1684	2	
BLOC STANDARD BETON TYPE 2488			3	
BLOC STANDARD BETON TYPE 24168	94	1688	12	

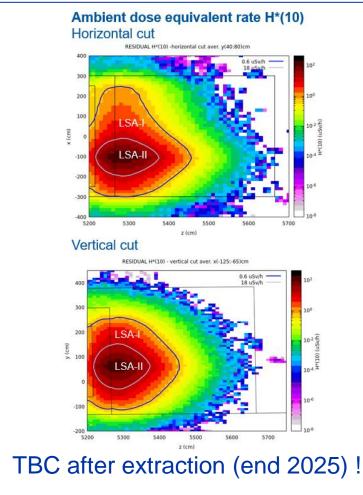
TT7 dump recovery project

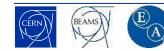
Unused shielding blocks left on "old" CERN locations, among which TT7 dump



What to expect

What to expect


The scope of the TT7 recovery project


100m³ of standard cast iron blocks (+non-standard cast iron blocks)

- Activated blocks (dose rate TBC after extraction, expected to be rather low for vast majority of blocks)
- Excavation of backfill mound required + rerouting of networks; recovery of the blocks + transport to NA
- Scraping + painting process to be finalized

Dimensions

- a) 1.6m x 0.8m x 0.8m (7.5t) 52 blocks (390t)
- b) 1.6m x 0.8m x 0.4m (3.8t) 56 blocks (213t)
- c) 1.6m x 0.8m x 0.2m (1.6t) 24 blocks (39t)
- d) 0.8m x 0.8m x 0.2m (0.8t) 131 blocks (105t)

Status / planning

Objective : Project completed before LS3 – Number + condition + dimension of blocks to be known before end 2025 Budget secured

Tender document produced, in approval loop before being sent out

									<u> </u>									
Description of the task		2024								2025								
	Jun	Jul	Aug Sep	Oct	Nov	Dec	Jan	Feb	March	April	May	June	July	August	Sept	Oct	Nov	Dec
<u>Milestone</u> : Budget allocation																		
1. Infrastructure Request Process (IRP)			//////5/	»/////														
1.1 Due diligence			//////69	¥/////														
2. Preconstruction activities / civil engineering studies					////100													
2.1 Civil Engineering studies / preparation of tender documentation							/6m////											
2.2 Site Investigation works (TBD)	///////////////////////////////////////	\$\$////	/////.															
3. Construction contract tender process											////3m							
3.1 Market survey																		
3.2 Tender process											////300							
4 On-site Preparatory Works												2m///						
4.1 Radiation Protection Testing												/////						
4.2 Network Diversion											//1m							
5 Civil Works															// 3-6 m			
													С	Courte	esy ⁻	Tama	ara E	Bud

Conclusion

About 180m³ of cast iron and 400 m³ of concrete / marble shielding block will be required for the BDF target station

Most of the required blocks will be retrieved from existing stocks and ancient facilities (TCC8, TT7, CNGS target, TCC2), essentially already activated

This will result in large savings in terms of money but also in terms of future radioactive wastes for the future

The fraction to be purchased (essentially non-standard blocks) remains to be clearly defined, linked to the detail design of the shielding layout, yet to be finalized

https://cern.ch/be-dep-ea