

Radiation protection considerations for the target complex

C. Ahdida, P. Bertreix, G. Dumont, F. Malacrida, G. Mazzola, O. Pinto, C. Theis, HI. Vincke, Hz. Vincke, P. Vojtyla

1st BDF Targetry Systems Advisory Committee (TSAC) 4-6th March 2025

1. Overview of RP Challenges at HI-ECN3

2. Target Complex Design Optimization

3. Target Studies

4. Service building considerations

HI-ECN3 at ECN3

TCC8 cross-section

Key beam parameters of BDF/SHiP

	BDF
Intensity (p/spill)	4×10 ¹³
Spill duration (s)	≥1
Cycle length (s)	≥7.2
Avg. beam power (kW)	356
Average intensity (p/s)	≤5.6×10 ¹²
Annual POT	4×10 ¹⁹
Duration (years)	15
Total POT	6×10 ²⁰

- **HI-ECN3:** a state-of-the-art high intensity experimental facility in ECN3 with RP optimization for full lifecycle
- Advantage of underground cavern with shielding created by the soil and beam dump concept

RP challenges

- High beam energy and intensity as well as high POT leading to high prompt radiation and activation levels
- Proximity to surface, experimental and public areas
- Losses during beam transfer (not covered here)

Target Complex Optimization

BDF/SHiP design optimization

• RP studies based on FLUKA MC simulations were performed for a design optimization of BDF/SHiP@HI-ECN3

• ALARA approach

Optimization required to ensure that exposure of personnel to radiation and radiological impact on environment are As Low As Reasonably Achievable

PROMPT RADIATION

Reduce prompt radiation to comply with **radiation area classification** in the surrounding accessible areas as well as the **1 mSv limit** at the **CERN fence**

RESIDUAL RADIATION

Limit activation of target and experimental area to reduce residual dose rates to be compatible with an adequate **area classification**

AIR AND SOIL ACTIVATION

Reduce activation of air and its releases into the environmental. Limit soil activation (³H<1000 Bq/kg, ²²Na<50 Bq/kg) and transfer to groundwater

ENVIRONMENTAL IMPACT

Reduce environmental impact from prompt radiation and releases of activated air to fulfill CERN's **dose optimization objective** for the **public** of **<10 uSv/year**

CERN's radiation area classification

	Area	Annual dose limit (vear)	Ambient dose equivalent rate		Airborne activity concentration	Surface contamination	
		0	permanent occupancy	low occupancy			
	Non-designated	1 mSv	0.5 µSv/h	2.5 µSv/h	0.05 CA	1 CS	
	Supervised	6 mSv	3 μSv/h	15 µSv/h	0.1 CA	1 CS	
Area	Simple Controlled	20 mSv	10 µSv/h	50 µSv/h	0.1 CA	1 CS	ea
ation	Limited Stay	20 mSv	-	2 mSv/h	100 CA	4000 CS	ed Are
Radi	High Radiation	20 mSv		100 mSv/h	1000 CA	40000 CS	ontroll
	Prohibited		-	> 100 mSv/h			ŭ

BDF/SHiP FLUKA model

~180 m³ of cast iron + US1010 ~360 m³ of concrete A detailed BDF/SHiP target complex together with the muon shield was implemented in FLUKA [1-3]

- Optimization of BDF shielding and re-use of existing, already activated TCC8/TT7 shielding blocks, while maintaining SHiP physics performance
- Shielding embedded in vacuum vessel allowing to reduce air activation
- Floor shielding reinforcement to limit soil activation
- FLUKA geometry includes the full underground TCC8/ECN3 cavern and surrounding galleries, tunnels, rooms, etc.
- Ground profile data from CERN's Geographic Information System and technical drawings were used to model the surrounding ground

Prompt radiation in target area

Avg. intensity of $5.6 \times 10^{12} \text{ p/s}$

Cross-sectional view

Side view

Along y-axis

- Shielding design is well optimized for the prompt radiation
- Annual limit of Non-designated Area on CERN domain

100 rem = 1Sv

Residual radiation in target area

Total PoT 6×10²⁰ (15 years)

dose lim (year) permanent low occupancy occupancy Non-designated 0.5 µSv/h 2.5 µSv/h 1 mSv 6 mSv 3 µSv/h 15 µSv/h Simple Controlled 20 mSv 10 µSv/h 50 µSv/h B imited Stay 20 mSv 2 mSv/h 00 20 mSv 100 mSv 80

Upstream of vessel w/o upstream shielding Preliminary worst case manual intervention scenario

- \geq After removal of the shielding upstream of the vessel, residual dose rates of several 100 µSv/h are expected
- Supervised Radiation Area on the sides
- Further optimization by movable shielding \geq
- Future detailed handling studies planned

in the central target region several 10 Sv/h after 1 month of cool-down

Radioactive waste production

- To distinguish areas of radioactive waste from conventional ones the Swiss clearance limits (LL) were used
- The following sum rule was applied for material containing a mixture of radionuclides

$$\sum_{i=1}^{n} \frac{a_i}{LL_i} < 1$$

 a_i - specific activity (Bq/g) of the *i*th radionuclide LL_i - respective Swiss clearance limit for the radionuclide *i n* - number of radionuclides present

- The most activated parts are the target and the iron shielding elements (also for 30 years of cooling)
- The minimisation of radioactive waste is being considered in the shielding design by having a modular shielding such that activated parts can easily be separated from non-radioactive parts

1 year of cooling (CDS design)

SPS Beam Dump Facility - Comprehensive Design Study, CERN-2020-002

Soil and air activation

	Area	Annual dose limit (vear)	Ambient dose equivalent rate		Airborne activity concentration	Surface contamination	
		0,	permanent occupancy	low occupancy			
	Non-designated	1 mSv	0.5 µSv/h	2.5 µSv/h	0.05 CA	1 CS	
	Supervised	6 mSv	3 µSv/h	15 µSv/h			
Area	Simple Controlled	20 mSv	10 µSv/h	50 µSv/h	0.1 CA	1 CS	89
ation	Limited Stay	20 mSv	-	2 mSv/h	100 CA	4000 CS	ed Are
Radi	High Radiation	20 mSv		100 mSv/h	1000 CA	40000 CS	ontrol
	Prohibited						ŭ

Total PoT 6×10²⁰

Specific activity of ³**H and** ²²**Na in the soil below TCC8** (most critical area)

- Thanks to floor iron shielding, ³H and ²²Na activity concentrations in the soil are below respective design limits
- A hydro-geological study is underway, which will allow to refine the design limits and possibly allow to reduce the required shielding

PoT 4×10¹⁹ per year **Air activation**

- Activation of air in target complex area were studied
- Production of radionuclides evaluated with FLUKA in combination with ActiWiz [5]

					13 N	2 mm 10 min
,		Air recyclin	g	Cont. release	¹¹ C	20 min
	Atot (Bq)	A_c (Bq/m ³)	CA multiple	A_{tot} (Bq)	⁴¹ Ar ¹⁴ O	110 min 1 min
	3.7×10^{6}	1.7×10^{3}	3.3×10^{-2}	1.2×10^{11}	⁴⁰ Cl ³⁵ P	84 s 47 s
					37S	5 min

Air recycling: build-up of radionuclides during operation w/o air extraction and 30 min cooldown time before air release Continuous release: long-term continuous releases without delay (very

conservative for environmental impact)

- Flush of target complex with fresh air before any access will further reduce specific airborne radioactivity
- H-3 out-diffusion/ejection nor potential leakage of Hecooling system not yet considered here

¹ Person working 40h/w, 50w/y with standard breathing rate in activated air with CA = 1 receives 20 mSv

35

0.2

02

 2.0×10^{8}

Environmental impact

Annus Ambient dose equivalent rate dose limi (year) permanent low occupancy occupancy 0.5 µSv/h 2.5 µSv/h Non-designated 1 mSv 6 mSv 3 µSv/h 15 µSv/h pervised imple Controlled 20 mSv 10 µSv/h 50 µSv/h B imited Stay 20 mSv 2 mSv/h 00 20 mSv 100 mSv/ 80

PoT 4×10¹⁹ per year

Dose from air releases

• Used max. dose coefficients from different age groups [6]

Effective dose estimates

	Effective dose $(\mu Sv/y)$
Air recycling	1×10^{-5}
Continuous release	3×10^{-3}

H-3 release due to air activation of ~80 kBq (w/o out-diffusion)

Positions of nearby population groups

- Continuous air release yields 3 nSv/year (main contributors: N-13, Ar-41, C-11, O-15) and is thus well below the annual dose optimization objective of CERN
- Additional contribution from H-3 out-diffusion/ejection and potential leakage of He-cooling system to be quantified

Dose from stray radiation

Annual effective dose

Annual limit of Non-designated Area on CERN domain and at CERN fence (1 mSv/y) as well as dose optimization objective for members of the public (10 uSv/y) are by far met

100 rem = 1Sv

BDF Target Studies

CDS target design

Water-cooled W + TZM target (136 cm) cladded with Ta2.5W

- Pursued during the comprehensive design phase → C. Ahdida et al., SPS Beam Dump Facility - Comprehensive Design Study, CERN-2020-002
- Prototype + test with beam + post irradiation examination (see talk R. Ximenes)

CDS target – Residual radiation

- The residual dose rates of the target were studied for 5 years of operation and different cool-down times
- The highest dose rates are in the order of 100 Sv/h after 4 hours of cooling and a few Sv/h after 1 year
- Even after 30 years, dose rates at 40 cm still of the order of a few mSv/h
- Shielding cask for handling to be designed allowing to also contain potential contamination
- Shielded storage area and service cell to be designed
- Shielding further to be foreseen for transport and final disposal (< 2 mSv/h)

Total PoT 4×10¹⁹ (5 yrs)

Longitudinal cut along the target

CDS target – Radionuclide inventories

Total PoT 2×10²⁰ (5 yrs)

LA multiples of CDS target materials

Main contributors (>1%), sum for all radionuclides

W

Radionuclide	Half-life	Multiple of LA value			2
		$T_c = 1 \mathrm{m}$	$T_c = 1y$	$T_c = 10$ y	$T_c = 30 \mathrm{y}$
Gd-148	74.60y	1.5E+08	1.5E+08	1.4E+08	1.1E+08
Yb-169	32.0d	3.2E+06	2.3E+03	2.9E-28	6.8E-97
Hf-172	1.87y	4.9E+07	3.5E+07	1.2E+06	7.5E+02
Hf-175	70.0d	3.1E+06	1.1E+05	8.4E-10	3.4E-41
Ta-182	114.7d	9.5E+06	1.3E+06	5.0E-02	4.7E-02
W-185	75.1d	3.2E+07	1.5E+06	1.0E-07	5.5E-37
Sum of all		2.6E+08	1.9E+08	1.4E+08	1.1E+08

Та

Radionuclide	Half-life	Multiple of LA value			
		$T_c = 1 \mathrm{m}$	$T_c = 1y$	$T_c = 10$ y	$T_c = 30 \text{y}$
Gd-148	74.60y	1.9E+07	1.9E+07	1.7E+07	1.4E+07
Hf-172	1.87y	6.4E+06	4.6E+06	1.6E+05	9.9E+01
m-Hf-178	4s	8.6E+05	8.4E+05	6.9E+05	4.4E+05
Ta-182	114.7d	6.6E+08	8.8E+07	2.1E-01	1.5E-20
Sum of all		6.9E+08	1.1E+08	1.8E+07	1.5E+07

Pure alpha/beta emitters are shown in bold Dominant radionuclide is shown in red

Total PoT 2×10²⁰ (5 yrs) + 1 month cool-down

Target	Material	Mass [kg]	Multiple LL	Multiple LA	A [Bq]
	W	695	1.9E+08	2.6E+08	9.2E+14
CDS	TZM	271	1.1E+09	8.4E+07	1.8E+14
	Та	28	1.7E+11*	6.9E+08	9.8E+14
*Dominated (99.9%) by Ta-182 (115 d half-life)					

TZM

Radionuclide	Half-life	Multiple of LA value			2
		$T_c = 1 \mathrm{m}$	$T_c = 1y$	$T_c = 10$ y	$T_c = 30 \text{y}$
H-3	12.33y	8.2E+04	7.8E+04	4.7E+04	1.5E+04
Si-32	132.00y	7.0E+03	7.0E+03	6.6E+03	6.0E+03
Ti-44	60.00y	2.4E+04	2.4E+04	2.2E+04	1.7E+04
Co-60	5.27y	6.8E+05	6.0E+05	1.8E+05	1.3E+04
Zn-65	244.2d	3.9E+05	1.5E+05	1.4E+01	1.3E-08
Ge-68	271.0d	1.2E+06	5.2E+05	1.2E+02	9.0E-07
Se-75	119.6d	8.5E+05	1.2E+05	6.6E-04	2.8E-22
Sr-82	25.6d	8.8E+06	1.0E+03	2.0E-36	1.9E-122
Rb-83	86.2d	1.6E+06	1.1E+05	3.7E-07	1.2E-32
Sr-85	64.8d	1.4E+06	3.8E+04	2.2E-11	2.8E-45
Zr-88	83.0d	2.2E+07	1.3E+06	1.6E-06	5.4E-33
Y-88	106.6d	9.4E+06	3.1E+06	2.9E-03	7.1E-24
Sr-90	28.79y	4.7E+04	4.6E+04	3.7E+04	2.3E+04
m-Nb-91	60.9d	1.3E+07	2.8E+05	1.6E-11	1.3E-47
Nb-91	680.00y	1.6E+05	1.7E+05	1.7E+05	1.6E+05
m-Nb-93	16.13y	1.6E+05	1.6E+05	1.1E+05	4.9E+04
Mo-93	3999.92y	1.1E+04	1.1E+04	1.1E+04	1.0E+04
Nb-94	19989.57y	7.2E+03	7.2E+03	7.2E+03	7.2E+03
Zr-95	64.0d	1.3E+07	3.5E+05	1.3E-10	6.0E-45
Nb-95	35.0d	7.2E+06	1.9E+05	6.9E-11	3.3E-45
Sum of all		8.4E+07	7.5E+06	5.9E+05	3.1E+05

Authorization Limit (LA) means the value corresponding to the abs. activity level of a material above which handling of this material is subject to mandatory licensing. It is based on the risk of inhalation. Clearance Limit (LL)

CDS target – Alternative Claddings

Cladding materials:

- Tantalum –16.6 g/cm3 1.
- Nb (ASTM R04210 Type 2) 8.6 g/cm3 2.
- Nb-1Zr (ASTM R04261 Type 4) 8.6 g/cm3 3.
- Nb-10Hf-1Ti (ASTM R04295) 8.86 g/cm3 4.

Total PoT 2×10²⁰ (5 yrs)

	Activity/LL -	Activity/LL -	Max. LMA	RN exceeding	
Material	5y	300y	fraction	LMA	RW Class.
Та	1.30E+07	7.72E+03	7.58E+01	H-3 (75), Gd-148 (1.65)	FA-MA (CH)
Nb	1.62E+07	7.36E+06	6.19E+03	Nb-94 (6190), H-3 (65)	FA-MA (CH)
Nb-1Zr	1.60E+07	7.28E+06	5.23E+03	Nb-94 (5230), H-3 (66)	FA-MA (CH)
Nb-10Hf-1Ti	1.55E+07	6.22E+06	6.12E+03	Nb-94 (6120), H-3 (65)	FA-MA (CH)
				Nb-94 half-lif	e of 20300 yrs

Waste classification as FA-MA¹ waste to be disposed of in Switzerland (no open pathway so far for such activation of Ta/Nb)

LMA: Acceptance Activity Limits, if activity levels < LMA candidate for elimination in France ¹ Low and intermediate activation waste for elimination in Switzerland

Total PoT 2×10²⁰ (5 yrs), 1y cool-down **Residual dose rates (uSv/h)**

> No difference in the residual dose rates for the various Nb claddings

dose rates from

surrounding material

CDS target – Water activation

- Activation of water from cooling circuits was estimated
- Shielding estimate around demineralization cartridges was performed assuming Be-7 to be stopped, but no target debris

 \rightarrow 50 cm cylindrical concrete shielding was foreseen and for the roof of the area 165 cm concrete

- Remaining water in circuit mostly contains H-3 with a concentration of around 20 MBq/l per year of operation (~4000 litres)
- High production of H-3 in target materials (~15 TBq during 5 years of operation)
- Quantification of out-diffusion/ejection with given operational conditions are crucial for evaluating the actual amount of H-3 activity in the cooling water

PoT 4×10¹⁹ (1 yr), 4 hours cool-down

Total Activity (Bq) for H-3 and Be-7

Radioisotope	Target	Proximity shielding	Magnetic coil
Be-7	1.3×10^{12}	$2.6 imes 10^9$	$6.2 imes 10^6$
H-3	$7.4 imes 10^{10}$	$1.8 imes 10^8$	$4.1 imes 10^5$

Results above **do not take out-diffusion** from target / shielding into account

CDS target – Prototype tests

- BDF target prototype w/ in total 14 h irradiation in TCC2, leading to 2.4E16 PoT
- Target activation was measured and compared to FLUKA simulations showing excellent agreement
- Cooling water activation was estimated with FLUKA
- Estimated residual dose rate after 1h of cooling at 40 cm from the cartridge is 18.7 mSv/h, while the PMI monitor measured 16.9 mSv/h
- Both samples showed the presence of high-Z spallation products some of them could have been produced in the target materials
- Water-cooling filter with debris was analysed via EDX
 - No peaks were found for Ta, W, Mo or Ti
 - Metallic particle (Al, Ca, Fe, Cl, Fe, Cr)

Benchmark of residual dose rates (mSv/h)

Position	Ambient dose rate	Ratio	
	Predicted (FLUKA)	Measured	Predicted/Measured
contact	25.15 ± 0.01	26 ± 1	0.97 ± 0.04
40 cm	4.42 ± 0.01	5 ± 1	0.9 ± 0.2

Radionuclides in water samples

Radionuclide	Activity [Bq/l]			
	Sample 1	Sample 2		
H-3	$1.96 imes 10^5 \pm 4.0\%$	$4.8 imes 10^5 \pm 4.0\%$		
Be-7	$7.7\times10^3\pm6.6\%$	$2.37 \times 10^{3} \pm 6.8\%$		
ScjSc44m	$2.49 \times 10^{1} \pm 6.9\%$	$4.85 \times 10^{1} \pm 5.7\%$		
Sc-46	$1.51 \times 10^{1} \pm 7.8\%$	$6.88 imes 10^1 \pm 6.8\%$		
Sc-47	-	$1.17 \times 10^2 \pm 9.2\%$		
Y-87	$1.45 \times 10^{1} \pm 8.4\%$	${4.85\times10^{1}\pm6.2\%}$		
Ru-97	-	$1.27 \times 10^{1} \pm 9.3\%$		
Ag-106m	$1.41 \times 10^{1} \pm 9.6\%$	-		
In-111	-	$1.13 \times 10^1 \pm 8.5\%$		
Eu¡Gd146	-	$1.19 \times 10^{1} \pm 8.3\%$		
Gd-149	-	$3.79 \times 10^1 \pm 8.1\%$		
Tb-155	-	$4.57 \times 10^{1} \pm 7.0\%$		
Tm-166	-	$7.05\pm7.7\%$		
Tm-167	-	$7.14 \times 10^{1} \pm 8.9\%$		
Yb-169	-	$3.13 \times 10^1 \pm 7.8\%$		
Lu-171	-	$8.51 \times 10^1 \pm 6.8\%$		

Water samples were analysed by liquid scintillation and gamma spectrometry

W target design

He-cooled, Pure W Core, potentially cladded (tbd)

- Improved physics performance (see talk G. Mazzola)
- Prototype and beam testing in 2025 and 2026 (see talk R. Ximenes)

19x W blocks (L1500 mm) (D250 mm)

W target – Radionuclide inventories

Total PoT 2×10²⁰ (5 yrs), 1 month cool-down

LA multiples of W target

Main contributors (>1%), sum for all radionuclides

Radionuclide	Half-life	Multiple of LA	Contribution
Gd-148	74.60 y	4.8E+08	59%
Hf-172	1.87 y	1.5E+08	18%
W-185	75.1 d	8.8E+07	11%
Ta-182	114.7 d	2.7E+07	3%
Yb-169	32.0 d	9.7E+06	1%
Hf-175	70.0 d	9.2E+06	1%
Sum of all		8.0E+08	

Pure alpha/beta emitters are shown in bold Dominant radionuclide is shown in red

LA for short-cool-down times:

- For 1h (4h), **Hf-178m** (4s half-life) produced via Ta-178m (2.36h half-life) is dominant
- For 1d, **Gd-148** (74y half-life) becomes most important (as for 1 month)

- Investigation of outgassing of radionuclides (incl. H-3) and possible formation of volatile chemicals ongoing → important for understanding of radiological risks connected to He-cooling circuit
 - Measurements during prototype target tests (e.g. analysis of filters/cartridge, quantification of contamination, H-3 measurements, inline gas spectrometer, etc.) are to be defined

Comparison to CDS target

Target	Material	Mass [kg]	Multiple LL	Multiple LA	A [Bq]
W target	W	1420	2.7E+08	8.0E+08	2.6E+15
	W	695	1.9E+08	2.6E+08	9.2E+14
CDS target	TZM	271	1.1E+09	8.4E+07	1.8E+14
	Та	28	1.7E+11*	6.9E+08	9.8E+14
*Dominated (99.9%) by Ta-182 (115 d half-life)				Authorizatior	n Limits (LA)

Swiss Clearance Limits (LL)

Surface building

RP considerations for service cell

- A HI-ECN3 service cell is crucial for safe packaging and disposal of highly radioactive equipment, as mandated by French and Swiss authorities
- The only available disposal pathway for the BDF target currently involves cutting it to fit within a KC-T12 container designated for disposal in Switzerland
- Alternatives such as transport to external facilities would require significant investments in transport casks and infrastructure, expected to cost several MCHF
- The cutting of the BDF target vessel requires a destructive technique (e.g. cable saw) causing contamination
- The total resuspended activity was estimated by assuming that 4 cuts on the vessel (stainless steel/Inconel) removing ~7.8 kg

Resuspended activity	Ma
Total PoT 2×10 ²⁰ (5 yrs) + 1 y cool-down	Inc

Material	Multiple LA
Inconel	1.2E+06
Stainless steel	1.3E+05

Service building area classification

Class A and C working areas will in addition have a Controlled Radiation Area classification with contamination risk (Limited Stay or High Radiation Area)

Work sector	Maximum Activity
Normal	LA
Туре С	1E+02 LA
Туре В	1E+04 LA
Туре А	Depending on authorization

Area	Annual dose limit (year)	Ambient dose equivalent rate		Airborne activity concentration (CA) and surface contamination (CS)		Sign RADIATION	
		permanent occupancy	low occupancy	A		2	
Non-designated	1 mSv	0.5 µSv/h	2.5 µSv/h	0.05 CA -			
Supervised	6 mSv	3 µSv/h	15 µSv/h	< 0.1 CA < 1 CS		Desirvator obligatory Zostivator obligatory	
Simple Controlled	20 mSv	10 µSv/h	50 µSv/h	< 0.1 CA < 1 CS		SMPLE CONTROLLED / CONTROLLE SMPLE Dosirveter obligatory Dosirveter-obligatory	e
Limited Stay	20 mSv	-	2 mSv/h	< 0.1 CA < 1 CS	< 100 CA < 4000 CS	LIMITED STAY / SÉJOUR LIMITÉ Dosinetins obligatory Dosinetines obligatores	ed Are
High Radiation	20 mSv		100 mSv/h	< 0.1 CA < 1 CS	< 1000 CA < 40000 CS	Index RADIATION / MAUTE RADIATION Desimations obligatory Desimations obligatory	ontrol
Prohibited						NO ENTRY DÉFENSE D'ENTRER	Ŭ

- At CERN, laboratories or working areas in which radioactive substances are manipulated are classified according to the Swiss Radiological Protection Ordinance (RPO)
- This area classification is in addition to the standard CERN area classification
- The work sector classification is based on the radionuclide dependent authorization limit LA
 - \rightarrow Specific working area requirements, e.g. ventilation, filters, fire resistance, decontamination possibilities, changing rooms, etc.
- EN-CV service for cooling system:
 - He-cooling: system with filters. In underground target area already HEPA filters + heat exchanger
 - 2. Water-cooling: ion exchanger cartridges w/ shielding underground
- Ongoing design definition together with FIRIA

Conclusions and outlook

- Main radiological aspects regarding an implementation of BDF/SHiP in ECN3 were investigated
- First shielding design for an optimization of exposure of personnel to radiation and radiological impact on environment
- Further detailed studies and optimization in the Technical Design Phase including amongst others:
 - BDF handling studies and target cask requirements
 - Service building and service cell studies including shielding requirements (walls, storage, waste container, etc.)
 - Evaluation of risks related to H-3 out-diffusion/ejection, and volatile radionuclides in the Hecooling system

home.cern

Bibliography

[1] Website: https://fluka.cern

- [2] C. Ahdida, D. Bozzato, D. Calzolari, F. Cerutti, N. Charitonidis, A. Cimmino, A. Coronetti, G. L. D'Alessandro, A. Donadon Servelle, L. S. Esposito, R. Froeschl, R. García Alía, A. Gerbershagen, S. Gilardoni, D. Horváth, G. Hugo, A. Infantino, V. Kouskoura, A. Lechner, B. Lefebvre, G. Lerner, M. Magistris, A. Manousos, G. Moryc, F. Ogallar Ruiz, F. Pozzi, D. Prelipcean, S. Roesler, R. Rossi, M. Sabaté Gilarte, F. Salvat Pujol, P. Schoofs, V. Stránský, C. Theis, A. Tsinganis, R. Versaci, V. Vlachoudis, A. Waets, M. Widorski, *New Capabilities of the FLUKA Multi-Purpose Code,* Frontiers in Physics 9, 788253 (2022)
- [3] G. Battistoni, T. Boehlen, F. Cerutti, P.W. Chin, L.S. Esposito, A. Fassò, A. Ferrari, A. Lechner, A. Empl, A. Mairani, A. Mereghetti, P. Garcia Ortega, J. Ranft, S. Roesler, P.R. Sala, V. Vlachoudis, G. Smirnov, *Overview of the FLUKA code*, Annals of Nuclear Energy 82, 10-18 (2015)
- [4] V. Vlachoudis, *FLAIR: A Powerful But User Friendly Graphical Interface For FLUKA*, in Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009)
- [5] H. Vincke, C. Theis, *ActiWiz optimizing your nuclide inventory at proton accelerators with a computer code,* Progress in Nuclear Science and Technology (2014)
- [6] P. Vojtyla, Models for assessing the dosimetric impact of releases of radioactive substances from CERN facilities to the environment Air, CERN Internal report (2021)

Activities multiples – CDS target

Total PoT 2×10²⁰ (5 yrs)

Activities of BDF target materials

W

Radionuclide	Half-life	Activity [Bq]			
		$T_c = 1 \mathrm{m}$	$T_c = 1y$	$T_c = 10y$	$T_c = 30 \text{y}$
H-3	12.33y	6.2E+12	5.9E+12	3.6E+12	1.2E+12
Pm-145	17.70y	6.6E+10	8.1E+10	7.0E+10	3.2E+10
Gd-148	74.60y	3.0E+10	3.0E+10	2.7E+10	2.3E+10
Tb-157	99.00y	2.8E+10	2.8E+10	2.6E+10	2.3E+10
Lu-172m	3.7min	4.9E+12	3.5E+12	1.2E+11	7.5E+07
Lu-172	6.7d	5.0E+12	3.5E+12	1.2E+11	7.6E+07
Hf-172	1.87y	4.9E+12	3.5E+12	1.2E+11	7.5E+07
Lu-173	1.34y	6.9E+12	4.3E+12	4.0E+10	1.3E+06
Hf-175	70.0d	1.9E+13	6.7E+11	5.0E-03	2.0E-34
Ta-178	9.3min	2.9E+13	6.3E+08	1.0E-37	1.9E-139
W-178	21.6d	2.9E+13	6.3E+08	1.0E-37	1.9E-139
Ta-179	1.61y	2.8E+13	1.9E+13	3.9E+11	7.2E+07
W-181	121.0d	1.0E+14	1.5E+13	1.0E+05	6.8E-14
Ta-182	114.7d	6.7E+12	8.8E+11	3.5E+04	3.3E+04
W-185	75.1d	6.5E+14	2.9E+13	2.0E+00	1.1E-29
Sum of all		9.2E+14	8.8E+13	4.6E+12	1.3E+12

Та

Radionuclide	Half-life	Activity [Bq]			
		$T_c = 1 \mathrm{m}$	$T_c = 1y$	$T_c = 10$ y	$T_c = 30 \text{y}$
H-3	12.33y	7.8E+11	7.4E+11	4.4E+11	1.4E+11
Pm-145	17.70y	8.6E+09	1.0E+10	9.0E+09	4.1E+09
Gd-148	74.60y	3.8E+09	3.8E+09	3.5E+09	2.9E+09
Tb-157	99.00y	3.7E+09	3.7E+09	3.5E+09	3.0E+09
Lu-172	6.7d	6.7E+11	4.6E+11	1.6E+10	1.0E+07
m-Lu-172	3.7min	6.4E+11	4.6E+11	1.6E+10	9.9E+06
Hf-172	1.87y	6.4E+11	4.6E+11	1.6E+10	9.9E+06
Lu-174	3.56y	4.1E+10	3.8E+10	6.9E+09	1.4E+08
m-Hf-178	4s	1.7E+10	1.7E+10	1.4E+10	8.8E+09
n-Hf-178	31.00y	1.7E+10	1.7E+10	1.4E+10	8.8E+09
Ta-179	1.61y	3.5E+12	2.4E+12	4.9E+10	9.0E+06
Ta-182	114.7d	4.6E+14	6.1E+13	1.5E+05	1.0E-14
Sum of all		4.8E+14	6.7E+13	6.1E+11	1.7E+11

TZM

Radionuclide	Half-life	Activity [Bq]			
		$T_c = 1 \mathrm{m}$	$T_c = 1y$	$T_c = 10$ y	$T_c = 30y$
H-3	12.33y	8.2E+12	7.8E+12	4.7E+12	1.5E+12
Fe-55	2.73y	2.7E+11	2.1E+11	2.2E+10	1.4E+08
Zn-65	244.2d	7.8E+11	3.0E+11	2.7E+07	2.7E-02
Ga-68	1.1h	7.3E+11	3.1E+11	6.9E+07	5.4E-01
Ge-68	271.0d	7.3E+11	3.1E+11	6.9E+07	5.4E-01
m-Ge-73	0.5s	2.0E+12	1.1E+11	5.5E-02	2.4E-29
As-73	80.3d	2.0E+12	1.1E+11	5.5E-02	2.4E-29
Se-75	119.6d	2.5E+12	3.7E+11	2.0E+03	8.5E-16
Rb-82	1.3min	5.3E+12	6.0E+08	1.2E-30	1.2E-116
Sr-82	25.6d	5.3E+12	6.0E+08	1.2E-30	1.2E-116
Rb-83	86.2d	8.1E+12	5.5E+11	1.8E+00	5.9E-26
m-Kr-83	1.8h	6.1E+12	4.1E+11	1.4E+00	4.4E-26
Mo-93	3999.92y	4.2E+10	4.2E+10	4.2E+10	4.2E+10
Sr-85	64.8d	1.1E+13	3.1E+11	1.7E-04	2.2E-38
Zr-88	83.0d	2.2E+13	1.3E+12	1.6E+00	5.4E-27
Y-88	106.6d	1.9E+13	6.1E+12	5.7E+03	1.4E-17
m-Nb-91	60.9d	2.5E+13	5.5E+11	3.2E-05	2.6E-41
Nb-91	680.00y	1.6E+11	1.7E+11	1.7E+11	1.6E+11
m-Nb-92	10.2d	4.2E+12	4.9E+02	1.8E-95	-
m-Nb-93	16.13y	9.7E+11	9.3E+11	6.4E+11	2.9E+11
Nb-95	35.0d	2.9E+13	7.7E+11	2.8E-04	1.3E-38
Zr-95	64.0d	1.3E+13	3.5E+11	1.3E-04	6.0E-39
Sum of all		1.8E+14	2.2E+13	5.6E+12	2.1E+12

Pure alpha/beta emitters are shown in bold Dominant radionuclide is shown in red Main contributors (>1%), sum for all radionuclides

HI CN3

Radionuclide inventory of W target

D = 25 cm, L = 150 cm

Total PoT 2×10²⁰ (5 yrs) + 1 month cool-down

Tungst	en – Total	Activity (Bq)
H-3		2.23E+13
W-185	67%,	1.75E+15
W-181	13%,	3.49E+14
Ta-178	3%,	8.80E+13
W-178	3%,	8.79E+13
Ta-179	3%,	8.34E+13
Hf-175	2%,	5.54E+13
Sum of a		2.60E+15

Tungsten – Multiple of LL						
H-3		1.57E+05				
Ta-182	49%	1.32E+08				
Hf-175	15%	3.90E+07				
W-181	9%	2.45E+07				
Lu-173	5%	1.46E+07				
Lu-172	4%	1.06E+07				
Ta-178	2%	6.19E+06				
W-178	2%	6.19E+06				
Ta-179	2%	5.87E+06				
Re-184m	2%	4.53E+06				
Eu-146	1%	3.06E+06				
Gd-146	1%	2.77E+06				
Sum of all		2.69E+08				

Tungsten – Multiple of LA

H-3		2.23E+05
Gd-148	59%	4.78E+08
Hf-172	18%	1.48E+08
W-185	11%	8.77E+07
Ta-182	3%	2.68E+07
Yb-169	1%	9.67E+06
Hf-175	1%	9.23E+06
Sum of all		8.03E+08

Multiples of Swiss Clearance Limits (LL) CDS Target

Total PoT 2×10²⁰ (5 yrs)

LL multiples of BDF target materials

W

Radionuclide	Half-life	Multiple of LL value			
		$T_c = 1 \mathrm{m}$	$T_c = 1y$	$T_c = 10 \text{y}$	$T_c = 30 \text{y}$
H-3	12.33y	9.0E+04	8.5E+04	5.1E+04	1.7E+04
Co-60	5.27y	1.3E+05	1.2E+05	3.6E+04	2.6E+03
Ba-133	10.54y	8.8E+05	8.3E+05	4.6E+05	1.2E+05
Pm-145	17.70y	9.6E+03	1.2E+04	1.0E+04	4.6E+03
Eu-146	4.6d	1.9E+06	1.6E+04	5.1E-17	1.5E-62
Gd-146	48.3d	1.7E+06	1.4E+04	4.6E-17	1.4E-62
Gd-148	74.60y	4.3E+04	4.3E+04	4.0E+04	3.3E+04
Eu-150	36.36y	3.4E+03	3.4E+03	2.8E+03	1.9E+03
Lu-172	6.7d	7.1E+06	5.0E+06	1.8E+05	1.1E+02
Hf-172	1.87y	7.0E+05	5.0E+05	1.8E+04	1.1E+01
Lu-173	1.34y	9.9E+06	6.2E+06	5.8E+04	1.8E+00
Lu-174	3.56y	1.4E+05	1.3E+05	2.4E+04	4.9E+02
Hf-175	70.0d	2.7E+07	9.7E+05	7.2E-09	2.9E-40
Ta-178	9.3min	4.2E+06	9.1E+01	1.5E-44	2.7E-146
W-178	21.6d	4.2E+06	9.1E+01	1.5E-44	2.7E-146
Ta-179	1.61y	4.0E+06	2.7E+06	5.7E+04	1.0E+01
W-181	121.0d	1.5E+07	2.1E+06	1.4E-02	9.8E-21
Ta-182	114.7d	9.6E+07	1.3E+07	5.0E-01	4.7E-01
Re-184m	168.0d	3.2E+06	8.0E+05	1.0E+00	8.6E-14
Sum of all		1.9E+08	3.4E+07	9.6E+05	1.9E+05

Та

Radionuclide	Half-life	Multiple of LL value			
		$T_c = 1 \mathrm{m}$	$T_c = 1y$	$T_c = 10 \text{y}$	$T_c = 30 \text{y}$
H-3	12.33y	2.8E+05	2.7E+05	1.6E+05	5.2E+04
Co-60	5.27y	4.8E+05	4.3E+05	1.3E+05	9.4E+03
Ba-133	10.54y	3.0E+06	2.8E+06	1.5E+06	4.1E+05
Pm-145	17.70y	3.1E+04	3.8E+04	3.3E+04	1.5E+04
Gd-148	74.60y	1.4E+05	1.4E+05	1.3E+05	1.0E+05
Eu-150	36.36y	1.2E+04	1.2E+04	1.0E+04	6.9E+03
Lu-172	6.7d	2.4E+07	1.7E+07	5.9E+05	3.6E+02
Hf-172	1.87y	2.3E+06	1.7E+06	5.9E+04	3.6E+01
Lu-173	1.34y	3.7E+07	2.3E+07	2.2E+05	6.8E+00
Lu-174	3.56y	1.5E+06	1.4E+06	2.5E+05	5.1E+03
m-Hf-178	4s	6.2E+04	6.1E+04	5.0E+04	3.2E+04
Ta-179	1.61y	1.3E+07	8.6E+06	1.8E+05	3.3E+01
Ta-182	114.7d	1.7E+11	2.2E+10	5.3E+01	3.7E-18
Sum of all		1.7E+11	2.2E+10	3.4E+06	6.5E+05

Pure alpha/beta emitters are shown in bold

Dominant radionuclide is shown in red Main contributors (>1%), sum for all radionuclides

TZM

Radionuclide	Half-life	Multiple of LL value			
		$T_c = 1 \mathrm{m}$	$T_c = 1y$	$T_c = 10 \text{y}$	$T_c = 30 \text{y}$
H-3	12.33y	3.0E+05	2.9E+05	1.7E+05	5.7E+04
Na-22	2.60y	7.5E+05	5.9E+05	5.3E+04	2.6E+02
Ti-44	60.00y	6.3E+04	6.2E+04	5.6E+04	4.4E+04
Sc-46	83.8d	2.2E+07	1.4E+06	2.1E-06	1.3E-32
Mn-54	312.1d	1.4E+07	6.5E+06	4.4E+03	4.0E-04
Co-60	5.27y	2.2E+06	2.0E+06	6.1E+05	4.4E+04
Zn-65	244.2d	2.9E+07	1.1E+07	1.0E+03	1.0E-06
Rb-83	86.2d	3.0E+07	2.0E+06	6.8E-06	2.2E-31
Sr-85	64.8d	4.1E+07	1.1E+06	6.4E-10	8.3E-44
Y-88	106.6d	6.9E+08	2.3E+08	2.1E-01	5.2E-22
Zr-88	83.0d	8.0E+07	4.9E+06	6.0E-06	2.0E-32
Sr-90	28.79y	1.0E+04	1.0E+04	8.1E+03	5.0E+03
Nb-91	680.00y	6.0E+03	6.2E+03	6.1E+03	6.0E+03
Nb-93m	16.13y	3.6E+05	3.4E+05	2.4E+05	1.1E+05
Mo-93	3999.92y	1.6E+04	1.6E+04	1.6E+04	1.5E+04
Nb-94	19989.57y	5.3E+04	5.3E+04	5.3E+04	5.3E+04
Nb-95	35.0d	1.1E+08	2.8E+06	1.0E-09	4.9E-44
Zr-95	64.0d	4.8E+07	1.3E+06	4.6E-10	2.2E-44
Tc-99	213995.36y	6.2E+03	6.2E+03	6.2E+03	6.2E+03
Sum of all		1.1E+09	2.6E+08	1.2E+06	3.4E+05

CDS air and He activation

Air and He regions in the target complex

A helium purification system provides a purity of at least 99.9% He (<0.1% air contamination)

Radioisotope	Target pit [Bq/y]	He vessel [Bq/y]
H-3	5.5×10^{4}	1.44×10^{9}
Be-7	9.0×10^{5}	1.46×10^{6}
Be-10	1.5×10^{-1}	3.57×10^{-1}
C-11	3.9×10^{9}	2.77×10^{6}
C-14	9.4×10^{3}	2.66×10^4
N-13	1.8×10^{10}	7.81×10^{6}
O-14	7.5×10^{8}	1.29×10^{5}
O-15	2.0×10^{10}	3.60×10^{6}
O-19	2.0×10^{6}	1.02×10^{3}
F-18	2.0×10^{5}	1.39×10^{3}
Ne-23	3.2×10^{6}	1.06×10^{3}
Ne-24	7.9×10^{5}	4.60×10^{2}
Na-22	2.4×10^{1}	9.44×10^{1}
Na-24	3.3×10^{4}	1.51×10^{3}
Na-25	5.9×10^{6}	1.73×10^{3}
Mg-27	5.0×10^{6}	2.70×10^{3}
Mg-28	1.2×10^{4}	8.41×10^{2}
Al-26	6.6×10^{-5}	2.10×10^{-4}
Al-28	4.0×10^{7}	7.89×10^{3}
Al-29	1.4×10^{7}	5.01×10^{3}
Si-31	1.7×10^{6}	8.91×10^{3}
Si-32	5.3×10^{-1}	1.57×10^{0}
P-30	1.6×10^{7}	2.86×10^{3}
P-32	3.7×10^4	2.17×10^4
P-33	2.2×10^4	2.13×10^{4}
P-35	2.6×10^{7}	4.15×10^{3}
S-35	1.3×10^{4}	2.22×10^{4}
S-37	5.7×10^{7}	1.35×10^{4}
S-38	6.2×10^{5}	4.01×10^{3}
C1-34	1.2×10^{6}	1.19×10^{3}
C1-36	1.7×10^{-2}	3.83×10^{-2}
C1-38	3.6×10^{7}	3.94×10^{4}
C1-39	6.8×10^{7}	1.12×10^{5}
C1-40	1.4×10^{8}	1.82×10^{4}
Ar-37	6.2×10^{4}	6.67×10^{4}
Ar-39	1.4×10^{2}	3.08×10^{2}
Ar-41	5.4×10^{8}	1.70×10^{6}
K-38	3.1×10^{4}	8.54×10^{0}
K-40	4.3×10^{-9}	1.19×10^{-8}
Sum	4.5×10^{10}	1.5×10^{9}
Short-lived	4.4×10^{10}	1.6×10^{7}

Annual releases from the target pit and the He vessel

Effective dose to reference groups

	Effective dose [Sv/y]		
Radioisotope	NW	А	
H-3	4.73379×10^{-9}	2.42462×10 ⁻⁹	
Be-7	1.64454×10^{-9}	6.71669×10^{-12}	
Be-10	2.9091×10^{-15}	2.30395×10^{-16}	
C-11	6.10442×10^{-10}	0	
C-14	1.27261×10^{-11}	3.15714×10^{-11}	
N-13	1.79319×10^{-9}	0	
O-14	2.73733×10 ⁻¹¹	0	
O-15	4.48658×10^{-10}	0	
O-19	7.182×10^{-15}	0	
F-18	4.96779×10^{-13}	1.40334×10^{-18}	
Ne-23	2.76003×10^{-15}	0	
Ne-24	1.65388×10^{-14}	0	
Na-22	4.39769×10^{-11}	6.0038×10^{-11}	
Na-24	3.25718×10^{-12}	1.42659×10^{-12}	
Na-25	2.53092×10^{-14}	0	
Mg-27	1.03207×10^{-11}	0	
Mg-28	1.4961×10^{-12}	3.69057×10^{-12}	
Al-26	1.16683×10^{-15}	7.18052×10^{-19}	
Al-28	3.22696×10^{-11}	0	
Al-29	2.02626×10^{-12}	0	
Si-31	1.74293×10^{-12}	4.41491×10^{-13}	
Si-32	2.70759×10^{-14}	4.70469×10^{-10}	
P-30	9.3639×10^{-13}	0	
P-32	6.49838×10^{-11}	2.33565×10^{-9}	
P-33	9.95586×10^{-12}	2.83428×10^{-10}	
P-35	8.69143×10^{-12}	0	
S-35	9.02045×10^{-12}	1.6713×10^{-10}	
S-37	1.02981×10^{-11}	0	
S-38	5.07684×10^{-12}	1.0884×10^{-14}	
C1-34	1.78834×10^{-12}	1.2214×10^{-26}	
C1-36	1.44043×10^{-14}	3.91422×10^{-13}	
C1-38	4.53519×10^{-11}	3.86606×10^{-23}	
C1-39	1.12714×10^{-10}	5.53001×10^{-19}	
C1-40	7.20983×10 ⁻¹²	0	
Ar-37	4.84585×10^{-19}	0	
Ar-39	8.3041×10^{-18}	0	
Ar-41	1.37001×10^{-10}	0	
K-38	2.39231×10^{-14}	0	
K-40	1.00467×10^{-20}	4.9991×10^{-20}	
Total	9.78×10^{-9}	5.31×10^{-9}	

Alternative cladding materials

Material:		Niobium (ASTM R04210 Type 2)	Nb-1Zr (ASTM R04261 Type 4)	Nb-10Hf-1Ti "C103" (ASTM R04295)
Density (g/cm3)	:	8.6	8.6	8.86
Composition:	С	0.01	0.01	0.015
Max Weight %	Ν	0.01	0.01	0.01
J	0	0.025	0.025	0.025
	н	0.0015	0.0015	0.0015
	Zr	0.02	0.8-12	0.7
	Та	0.3	0.5	0.5
	Fe	0.01	0.01	-
	Si	0.005	0.005	-
	W	0.05	0.05	0.5
	Ni	0.005	0.005	by difference
	Мо	0.02	0.05	-
	Hf	0.02	0.02	9-11"
	Ti	0.03	0.03	0.7-1.3"
Reference:		[1]	[2]	[3]
[1] [2]	- https://www.r https://www.t	navstarsteel.com/niobiu tantalum-niobium.com/	u <mark>m-sheet.html</mark> niobium/nb-1zr-wire-rod.	<u>html</u>
[3]	Ximenes Fra	inqueira R., Internal co	mmunication, (2021)	

Target vessel materials

Inconel - AW3.7 - 8.4 g/cm3	
ALUMINUM	1.15E-02
BORON	6.00E-05
CARBON	8.00E-04
CHROMIUM	2.10E-01
COBALT	1.00E-02
COPPER	8.00E-03
IRON	1.11E-01
MANGANESE	3.50E-03
MOLYBDENUM	3.30E-02
NICKEL	5.50E-01
NIOBIUM	5.50E-02
PHOSPHORUS	1.50E-04
SILICON	3.50E-03
SULFUR	1.50E-04
TITANIUM	3.00E-03

SS316LN - AW3.7	7 - 8 g/cm3
CARBON	3.00E-04
COBALT	1.00E-03
CHROMIUM	1.73E-01
IRON	6.39E-01
MANGANES	2.00E-02
MOLYBDEN	2.50E-02
NITROGEN	1.70E-03
NICKEL	1.30E-01
PHOSPHO	2.25E-04
SULFUR	7.50E-05
SILICON	1.00E-02

Some additional studies

Beam transfer

- Several RP studies for the high intensity SPS-ECN3 beam transfer were performed
- This includes studies for a bridge above the TDC85 transfer tunnel near ECN3

Prompt H*(10) ⁰⁰ ⁰¹ ^{10¹} ^{10²} ^{10²} ^{10²} ^{10³} ^{10²} ^{10³} ^{10²} ^{10³} ^{10³}

TT7 shielding recovery

 Shielding recovery from discontinued CERN PS Neutrino Facility (PSNF)

~100 m³ std. cast iron blocks
~50 m³ non-std cast iron blocks
~3 MCHF, investment <1/3

Residual H*(10)

Radioactive waste zoning

TCC8 dismantling

- Dismantling of the highly radioactive TCC8 target area in 2026
- Evaluation of residual dose rates and radionuclide inventories for operational RP as well as radioactive transport and waste studies

Residual H*(10)

Claudia AHDIDA | RP considerations for the target complex

Optimization of MHS length

Ongoing optimization of MHS length to enhance SHiP's physics performance, while maintaining optimization goals for radiation (RP, radiation to material) in the downstream area

FLUKA model w/ reduced MHS length

MHS length and dump reduced from 4.5 m to 2.3 m with full W target and Cu plug

Prompt radiation

Along z-axis <X> = [-12:12] cm, <Y> = [-20:15] cm H*(10) [µSv/h] All Particles Pions Muons Neutrons 10 10 10^{6} MHS Targe 10 2 Z (m)

Prompt dose rate for the reduced length is ~7 times higher than for the longer version

dose limi (year) permanent low occupancy occupancy 0.5 µSv/h 2.5 µSv/h Non-designated 1 mSv 6 mSv 3 µSv/h 15 µSv/h 20 mSv 10 µSv/h 50 µSv/h A imple Controlle imited Stay 20 mSv 2 mSv/h 00 20 mSv 100 mSv/ 80

Ambient dose equivalent rate

Δnnua

Residual radiation

Along z-axis

10

Along beamline dose rates are compatible with Supervised Radiation area after 1 day. On sides expected to be lower

10 min

1 hour

1 dav

1 month

Radioactive Material

When is a material radioactive?

Surface contamination exceeds limits

as given in the Annex of EDMS 942170 (> 1 CS)

Specific and total activity exceed clearance limits (LL values) as given in the Annex of EDMS 942170 (adopted from Swiss legislation)

OR

Net ambient dose equivalent rate > 0.1 μ Sv/h in 10 cm distance

OR

Sum rule for mixture of radionuclides:

Examples: 0.1 Bg/g for ²²Na, ⁵⁴Mn, ⁶⁰Co

1000 Bq/g for ⁵⁵Fe

 $\sum_{i=1}^{n} \frac{a_i}{LL_i} < 1$

CERN 942170 8.0 RELEASED CH1211 Genève 23 Suisse ÇERN Date: 02-03-2021 Operational Radiation Protection Rule **Clearance Limits for Radioactive Material at CERN** DOCUMENT PRÉPARÉ PAR OCUMENT VÉRIFIÉ PAR DOCUMENT APPROUVÉ PAR C. Theis G. Dumont S. Roesler HSE-RP Hz. Vincke HSE-RP HSE-RP GROUPE D'APPROBATION

Sum rule for mixture $\sum_{i=1}^{i} \frac{c_i}{CS_i} < 1$