Extraction of physical quantities from edge-TCT measurements

I. Dolenc Kittelmann, M. Moll, N. Pacifico CERN

Outline

- Motivation
- Method
- ◆Method explained on example of one of the measurements from N. Pacifico's talk:
 - MCz-p strip detector, $\Phi = 10^{16}$ protons/cm²
 - ◆ Not annealed
 - $U_{bias} = 700V$
 - ◆ T=-25 $^{\circ}$ C

Motivation

- Classical TCT measurement with red laser:
 - Offers trapping time determination with the assumption: $\tau_{e,h}(E) = \text{const.}$
 - ◆ Difficulties with trapping time extraction for highly irradiated detectors → $\tau_{e,h}(E)$ ≠const?
- ◆Edge-TCT measurement:
 - Offers $v_{dr}(z)$ extraction $\rightarrow \tau_{e,h}(E)$
 - Our aim: extract $\tau_{e,h}(E)$

How?

- ◆ <u>Inputs</u> (eTCT measurement):
 - signals(z, U_b)
 - $v_{dr,m}(z)$ profile across detector (for given bias U_b and temperature) extracted from the initial rise of signals $g^m(z)$
- Method to extract $\tau_{e,h}(E)$:
 - Disentangle "true" point charge $v_{dr,t}(z)$ profile from measured $v_{dr,m}(z)$ assuming $v_{dr,t}(z)$ is smeared with Gauss function to take into account laser width and imperfect polishing of detector: $v_{dr,m}(z) = G(0,\sigma) * v_{dr,t}(z)$
 - $v_{dr,t}(z)$ profile $\rightarrow v_{dr,t}^e(z)$, $v_{dr,t}^h(z)$, E(z)
 - From E(z):
 - Calculate induced current signal for either front or back injection, where only one type of charge carriers drifting
 - Add trapping
 - Convolve with transfer function of the measurement system to take into account the electronics
 - Vary the trapping model function parameters to fit the calculated waveforms $g^c(z)$ to the measured ones $g^m(z)$
- Method is still under development, but some <u>preliminary results</u> will be shown for an example of one measurement on MCz-p strip detector irradiated to 10^{16} protons/cm², not annealed, U_{bias} =700V

Drift velocity deconvolution (1/5)

- Problem: deconvolution most often ill posed problem g(z)=h(z)*f(z)
 - in Fourier space $G(\omega) = H(\omega)F(\omega) \rightarrow F(\omega) = G(\omega)/H(\omega)$
 - $H(\omega)$ is typically a low pass filter, the inverse $1/H(\omega)$ is a high pass filter \rightarrow <u>amplifies</u> noise and numerical errors!
- ◆ How they usually deal with this problem
 - <u>Regularization</u> (filtering):
 - ♦ In real space: g(x)=H(x)f(x), H=convolution matrix in real space
 - Instead of minimizing functional $min\|Hf-g\|^2$ to obtain the solution in the least squares sense add smoothing term(s) to regularize the problem $\min\{\|Hf-g\|^2 + \|\Omega\|^2\}$
 - Ω typically contains terms like $(d^n/dx^n)f$, each term has a regularization constants which defines the level of smoothness: puts a limit on the noise amplification but it smoothens both noise and f (bad for edges in f...)
 - In general, more terms in Ω give better estimation of f, but...
 - Regularization constants are chosen by the user, one should find optimal regularization constants which give "optimal" result, not an easy task...
 - "Fitting": take model function for f and vary parameters to fit the measured data
 - Gives best results, if the model function is known...:)

Drift velocity deconvolution (2/5)

Deconvolution problem $v_{dr,m}(z) = G(0,\sigma) * v_{dr,t}(z)$

- Several regularization methods tried
- For example: method which is meant to be "edge preserving" and gives an option to determine the σ , but...
 - Contains at least 4 regularization constants, no automatized method proposed to determine the regularization parameters proposed...
 - ◆ Tried to find a method to determine a quantity that could be monitored to tell which regularization constants give "best" result
 - Decided not to use this method, since it is time consuming and no reliable algorithm for automatization was found...

^[1] L. Bar et al.," Semi-Blind Image Restoration Via Mumford-Shah Regularization", IEEE Trans. on Image Proc., Vol. 15, No. 2, pp. 483-493, 2006.

^[2] L. Bar et al., "Image deblurring in the presence of impulsive noise", Int. J. Comput. Vision, Vol. 70, No. 3, pp. 279-298, 2006

Drift velocity deconvolution (3/5)

Deconvolution problem $v_{dr,m}(z) = G(0,\sigma) * v_{dr,t}(z)$

- Decided to use "fitting" strategy
- $v_{dr,t}(z)$ function is modeled with 2-3 parabolas/lines applied to different regions of detector
- ◆ Least squares minimization with TMinuit is performed: typically Simplex method is used to bring initial guess closer to solution, followed by Migrad minimization to improve the result
- ◆ Parameters
 - σ of Gaussian blur function
 - Points (z, v_{dr}) determining the 2 or 3 regions with different parabolas/lines
 - Constant *a* or *b* $(v_{dr}(z) = az^2 + bz + c)$ for each parabola
 - depending on the problem, some can be fixed before Migrad and/or Simplex minimization

Drift velocity deconvolution (4/5)

Example:

- MCz-p strip detector, $\Phi = 10^{16}$ protons/cm², no annealing, $U_{bias} = 700$ V, $T = -25^{\circ}$ C
- ◆ Model function: 3 parabolas in 3 different regions
- 5 fixed parameters: positions of 3 regions and σ of Gaussian blur function
- Compared results given by minimization with different values of the 5 fixed parameters to check which set gives best result:
 - σ_{best} =9 μ m (expected laser σ =7.5-8 μ m)
 - Detector thickness d_{best} =292 μ m

Drift velocity deconvolution (5/5)

- $v_{dr,t}(z)$ Calculate of $v^e_{dr,t}(z)$, $v^h_{dr,t}(z)$, E(z)
 - Constraint $\int E(z)dz = U_{bias}$ to determine the absolute scale
 - Mobility model: MINIMOS4

Transfer function of the meas. system (1/4)

• Measured I_i and $V_o(2.5 \text{GHz scope}, \text{Agilent DSO}9254A)$:

 $I_i \delta$ -like current spike

 V_g : step-like voltage pulse

◆ *H* calculated in Fourier space (Riad-Parruck method [3]):

$$H(\omega) = rac{V_o(\omega)}{I_i(\omega)} S(\omega)$$

◆ Filter (regularization):

$$S(\omega) = rac{|I_i(\omega)|^2}{|I_i(\omega)|^2 + \lambda}$$

[3] B. Parruck, S. M. Riad, 1EEE Trans. Instr. & Meas, vol. IM-32, no. 1, pp. 137-140,. Mar. 1983

Transfer function of the meas. system (2/4)

- Optimal regularization constant λ determination:
 - For each λ :
 - Check the integral of calculated H(t) to get a smooth step-like waveform (less sensitive to noise), $\int H(t)dt$
 - check mean, $A(\lambda)$, and RMS, $N(\lambda)$, in the tail part of the step-like response $\int H(t)dt$
 - Optimum λ_{opt} :

$$\frac{A(0) - A(\lambda_{opt})}{A(0)} \ll 1$$

$$N(\lambda_{opt}) \ll N(0)$$

Transfer function of the meas. system (3/4)

Result

Transfer function of the meas. system (4/4)

Check: how calculated H(t) transforms a different V_i ?

Looks good, but...

Trapping time

- Procedure:
 - Consider front/back injection (only one type of charge drifting)
 - \bullet *E*(*z*) → calculate induced current
 - ◆ Add trapping, convolve with transfer function and vary trapping model parameters to fit the result to measured waveform in the least squares sense (Minuit minimization)
- ◆ Fit parameters:
 - Normalization constant
 - parameters for $\tau_{e,h}$ modeling
- $\tau_{e,h}$ modeling:
 - **1)** Drift divided in *n* equidistant time regions with different trapping time for each region
 - **2)** Assume

$$au_{e,h}(E) = au_{e,h}^0 + au_{e,h}^1 ext{Exp}\left(-rac{E}{E0}
ight)$$

Trapping time: electrons (back injection)

Back injection for our example

- $\tau_e \sim 0.4$ ns expected from classic TCT measurements [4]
- ◆ Modeling with <u>exponential</u> dependence on *E*
- Observations:
 - Differences in rise time between measured and calculated signal, and ringing...

• τ_e constant, higher than as expected from [4]

Trapping time: electrons (back injection)

- ◆ Modeling with <u>3 equidistant</u> time regions
 - ◆ Result consistent with result on previous page

Trapping time: holes (front injection)

Front injection in our example

- $\tau_h \sim 0.2$ ns expected from classic TCT measurements [4]
- ◆ Modeling with <u>exponential</u> dependence on *E*
 - ◆ Again: differences in rise time between measured and calculated signal, ringing...
 - τ_h decreases with E, higher then expected from [4]

- ◆ Modeling with *n* time regions
 - Fit converged
 - ◆ But τ_h (region) not smooth: in some of the middle regions τ_h very high will in the rest τ_h between 0.7-1.5ns → ringing + signal in the tail too low to give meaningful result

Summary

- ◆ Presented a method to extract trapping times from edge-TCT measurements based on:
 - Point charge $v_{dr}(z)$ profile calculation
 - Fitting calculated signal waveform to the measured one by varying the trapping time model parameters
- Method still under development, but was explained on example of one measurement
- Future plans:
 - ◆ Test the method on <u>unirradiated</u> detector
 - Comparison of calculated and measured signal might reveal if our transfer function was not properly determined
 - ◆ Possible extraction of the transfer function itself with the Riad-Parruck deconvolution method by taking the calculated signal as input and measured signal as output
 - ◆ Test the method on detector irradiated with <u>lower fluencies</u>
 - ◆ Less trapping → longer pulses, expect less problems in the tail part of the signal
 - As a check: take calculated signal in the middle of detector and compare it to the measured one