Nitrogen-doped silicon as a potentially radiation-hard material

Paweł Kamiński

Institute of Electronic Materials Technology ul. Wólczyńska 133, 01-919 Warszawa, Poland

11/22/20

Nitrogen Influence on Properties of Silicon Single Crystals

• Enhancement of oxygen precipitation

- Improvement of gate oxide integrity (GOI)
- Increase in mechanical strength

 In FZ-Si significant reduction of A (*swirl*) and D (*flow pattern*) defects attributed to aggregates of self-interstitials and vacancies, respectively.

Comparison of Impurities Properties in Si

Covalent Radius [Å]

Si	0	С	Н	N
1.11	0.73	0.77	0.32	0.75

	OXYGEN	CARBON	HYDROGEN	NITROGEN
SOLUBILITY (cm ⁻³)	2.75±0.15x10 ¹⁸	3.2±0.3x10 ¹⁷	<10 ¹⁵	4.5±1.0x10 ¹⁵
DIFFUSIVITY (cm ² /sec)	0.17 exp(<u>-2.54</u>) kT	0.33• •xp(<u>-2.92±0.25</u>) kT	9.4x10 ⁻³ . exp $\left(\frac{-0.48}{kT}\right)$ D ₀ exp $\left(\frac{-0.8}{kT}\right)$	$0.87 \exp\left(\frac{-3.29}{kT}\right)$ $3x10^{-2} \cdot$ $\exp\left(\frac{-2.63}{kT}\right)$
EQUILIBRIUM DISTRIBUTION COEFFICIENT	1.25	~0.1		~10 ⁻³
PREDOMINANT BONDING	Si Si Si Si	si si si	H 	Si N Si Si
				'SUGGESTED'

Herman J. Stein, Mat. Res. Soc. Symp. Proc. Vol. S9. 1986 Materials Research Society

Interaction with intrinsic defects
 Recombination between interstitials and vacancies

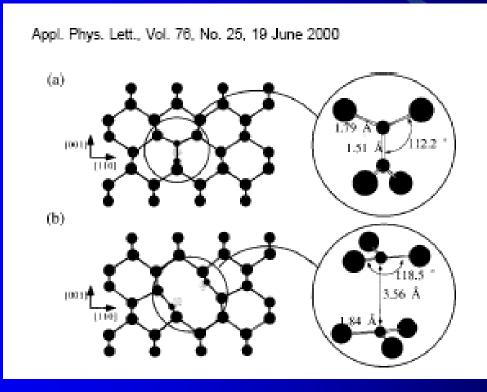
 N_2 (interstitial) + V \rightarrow N_2 (substitutional)

and

 N_2 (substitutional) + I \rightarrow Si + N_2 (interstitial)

12212

W. v. Ammon et. *al.*, Mater. Sci. Eng. B 36 (1996) 33L. Shaik et *al.*, J. Appl. Phys. 87 (2000) 2282


Interaction with intrinsic defects

• Formation of complexes N_2 pair and one Si vacancy: $N_2 + V \leftrightarrow \{N_2 - V\}$; 0.82 eV \downarrow N_2 pair and Si divacancy: $N_2 + V_2 \leftrightarrow \{N_2 - V_2\}$; 3.61 eV \downarrow Another formation path: $\{N_2 - V\} + V \leftrightarrow \{N_2 - V_2\}$; 4.07 eV \downarrow Further coupling with V: $\{N_2 - V_2\} + V \leftrightarrow \{N_2 - V_3\}$; 0.30 eV \downarrow

Models based on first principles calculations using DFT H. Kageshima et *al.*, Appl. Phys. Lett. 76 (2000) 3718

Atomic configurations of {N₂-V} and {N₂-V₂} complexes

Kageshima et al.

Interaction with impurities

Nitrogen-oxygen (N-O) complexes in Cz Si
 They are observed through the absorption lines at 240, 242 and 249 cm⁻¹ in FTIR spectra.

They are formed in as-grown material and after annealing at 650 °C. Their concentration is by two orders of magnitude lower than that of [N].

They disappear after annealing at 900 °C.

Their formation may suppress the reaction of carbon with oxygen atoms.

D. Yang et *al.*, Appl. Phys. Lett. 68 (1996) 487 – experimental studies
C. P. Ewels et *al.*, Phys. Rev. Lett. 77 (1996) 865 – calculations based on local density functional theory (DFT)

Interaction with impurities

Larger complexes composed of nitrogen and oxygen atoms in Cz-Si

 $N_1 - O_m$ (m>1) formed by attaching more oxygen atoms to N; act as a shallow thermal donor.

 N_2O_m involving pair of nitrogen atoms and oxygen aggregate; can become the nuclei of small oxygen precipitates.

 $\{N_2-V_2\}-O_m$ formed at high temperatures; also can act as the nuclei of oxygen precipitates.

X. Yu et al., J. Appl. Phys. 92 (2002) 188

V.V. Voronkov et al., J. Crystal Growth 273 (2005) 412

Summary

- So far the interaction of nitrogen with point defects produced by hadron irradiation has not been studied.
- The results for as-grown and nitrogen-implanted silicon suggest that nitrogen atoms may act as centers of annihilation of radiation induced native point defects, as well as traps combining aggregates of vacancies.
- The problem of silicon radiation hardness improvement due to nitrogen-doping could be studied within the framework of RD 50 project using the material offered by TOPSIL.

Attn: Dr Paweł Kamiński ITME From: Michael Kwestarz <u>m.kwest@cematsil.com.pl</u>

QUOTATION NO. MK/445

Part: Si:N Specification: Page: 1 Date: 04. November 2011

Nitrogen FZ Silicon Wafers

Details of specification

Material	:	FZ Wafer	
Orientation	:	Any	
Type/Dopant	:	N/Ph	
Resistivity Ω cm	:	>1000	
Diameter mm	:	15 +/- 0,5	
Thickness um	:	2000 +/- 100	
Finish	:	Polished	
Edge rounding		: Polished	

		Detector limit			
				0.5*1E16	
	Resistivity		Carbon	Oxygen	Nitrogen
Ingot no.	Ohm cm	type	1E16	1E16	1E14
3137923	2000	N	0,10	1,10	15,00
2138967	4500	N	0,00	0,00	9,00
2141912	4000	N	0,10	0,60	9,00
2142595	5000	N	0,00	0,20	10,00
2142703	6500	N	0,00	0,20	12,00
2143317	5000	N	0,20	0,10	13,00
2144748	5000	N	0,00	0,30	11,00
2145035	5000	N	0,00	0,50	14,10
2145634	4000	N	0,00	0,70	14,00
3140341	2000	N	0,30	0,90	13,00

Price/Wafer : EUR 116,25

Delivery time : Approx. 1 week from receipt of order

Terms of payment : Net 30 days Terms of delivery : FCA Warsaw, Incoterms 2000

Validity of quotation: 30 days

Delivery of ± 10% on the ordered quantity and ± 25% on the smaller orders (≤ 1,000 Pcs/ ≤ 1,000 mm) is considered standard.

Cemat Silicon SA 133, Wolczynska St. 01-919 Warsaw Poland Phone: +48 22 835 19 39 Fax: +48 22 865 77 35

http://www.cematsil.com http://www.cz-method.com

10

11/22/2011

Attn: Dr Paweł Kamiński ITME From: Michael Kwestarz <u>m.kwest@cematsil.com.pl</u>

QUOTATION NO. MK/446

Part: Specification: Si:N Page: 1 Date: 04. November 2011

Nitrogen doped FZ Silicon Wafers

Details of specification

Material		:	HiRes	
Orientation		:	(1-0-0) +/-0,5 Deg	
Type/Dopant		:	N/Ph	
Resistivity	Ωcm	:	>5000	
Lifetime	µsec.	:	≥1000	
Carbon	Atoms/Cm ³	:	< 2.0×1E16	
Oxygen	Atoms/Cm ³	:	< 2.0×1E16	
Diameter	mm	:	150 +/- 0,2	
Flat, Primary mm		:	SEMI standard	
Flat, Secondary mm		:	None	
Thickness	μm	:	675 +/- 10	
Finish		:	Single side polished	
Edge rounding		:	Yes, standard	
TTV	μm	:	≤5	
Bow	μm	:	≤30	

Delivery time : Approx. 1 week from receipt of order

Terms of payment : Net 30 days Terms of delivery : FCA Warsaw, Incoterms 2000

Validity of quotation: 30 days, and only as long as said item remains available in stock

Delivery of ± 10% on the ordered quantity and ± 25% on the smaller orders (≤ 1,000 Pcs./ ≤ 1,000 mm) is considered standard.

Cemat Silicon SA 133, Wolczynska St. 01-919 Warsaw Poland Phone: +48 22 835 19 39 Fax: +48 22 865 77 35 http://www.cematsil.com http://www.cz-method.com

11/22/201

Acknowledgements

This overview was prepared with the financial support of the Polish Ministry of Science and Higher Education under grant No. DPN/N185/CERN/2009