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Motivation 

 Modeling the electric field for heavily irradiated n+-p sensors 

 Input to simulations. 

 Understanding the neutron damage.  

 Where does the “standard” device model break down?  

 

 Conventional TCT which was used to extract the electric field shape at low 

fluences from the time evolution of the induced currents is not possible – too 

much trapping.  But Edge-TCT (IEEE Trans. Nucl. Sci. Vol. 57(4), 2010, p. 2294) can … 
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It aims to get an approximate agreement with measurements. 

It should be easily fed to the simulators, but it does not try to 

quantitatively explains the reasons for space charge distribution. 



Samples and measurement technique  
Samples Fluences Annealing 

HPK (ATLAS-07 run) 

1x1 cm2, 300±20 mm thick, p-type 

isolation: p-stop  

initial Vfd~180-190 V 

• non-irradiated (100 mm pitch) 

• 5∙1014 cm-2 (75 mm pitch) 

• 1,2,5,10∙1015 cm-2 (100 mm) 

 

sequential steps at 

60ºC up to 80 min 

(0,10,20,40 min)  

Neutron irradiated samples 

Measurements done at -20ºC 

Annealing done with samples mounted in the setup 

to ensure that the same spot in the detector is 

illuminated at different annealing times 
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IEEE Trans. Nucl. Sci. Vol. 57(4), 2010, p. 2294. 



Electric field profile 
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 active region is only the depleted part (providing the 

integration time is short - LHC like) 

 weighting field determined by the border of the 

depleted region (depends on resistivity) 

V. Eremin et al., NIM A360 (2004)  458, NIM A535 (2004) 622. 

D. Menichelli et al., NIM A426 (1999) 135.,  

I. Mandic et al., NIM A512 (2004) 343  and many, many more … 

 

𝑦𝑎𝑐𝑡 𝑦𝑏𝑎𝑐𝑘 

Neff<0 

Corresponding space charge 

Neff>0 

Neff~0 Key questions for modeling: 

 shape of Neff(y) – in different regions 

 yact 

 yback 
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Velocity profile – basis of the model  

 The initial rise of the induced current signal is proportional to the drift velocity. 

 does not depend on trapping of the drifting charge 

 scanning over the depth (y) one can get the velocity profile 
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Non-irradiated p-type sensor 

Vfd from CV and CCE profile agree well. 

for V<Vfd there is a region with E field at the back (p-p+ contact), due to large 

difference in free hole concentration. 

at high voltages drift velocity is almost saturated in the entire detector. 

active zone is determined as region with E>0. 
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Velocity profiles for irradiated sensors  
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Determination for irradiated sensors 

 yact and yback determined from intersection of the lines 

 Determination from charge collection profile would give in similar values 
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Main Junction – active zone (yact) 
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 decrease of yact with fluence 

 The rate of decrease tends to 

be smaller with fluence 

 relatively large zone at very 

low voltages 

DEPENDENCE ON FLUENCE DEPENDENCE ON ANNELING 

1015 cm-2 

5x1014 cm-2,1x1015 cm-2 

2x1015 cm-2, 5x1015 cm-2 

1x1016 cm-2 

0 min, 2135 V 

10 min, 1860 V 

20 min, 1700 V 

40 min, 1550 V 

80 min, 1510 V 
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 For the low fluences the Neff=const. 

model works – the values of Vfd are 

consistent with expectations based on 

RD48/50 data. 

 The voltage drop in the bulk and at the 

back are small compared to the main 

junction. 

80min@60oC 



Annealing at higher fluences 

 Short term annealing is always beneficial  

 The “standard device model” starts to break down 

 active region is larger than expected 

 the fits are getting worse at high fluences 

 active zone at low voltages is larger than expected 

 The Vfd obtained from the fit can be used to calculate Neff 
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 Substantial uncertainty as the voltage 

drop occurs also in non-depleted bulk 

and back junction. 
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Annealing at higher fluences (II) 

 up to 1-2x1015 cm-2 the device model 

based on Neff=const. (+ active bulk) 

works  

 At high fluences the active zone grows as 

if Neff is smaller than predicted from low 

fluence values 
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Approximately in agreement with 

RD48/50 data for low fluences 

THIS INTRODUCTION RATES SHOULD ONLY BE USED TO 

CALCULATED yact AT GIVEN VOLTAGE AND FLUENCE. 
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Second junction – yback (I) 

 No obvious dependence on annealing. 

 Weak or no dependence on fluence – underlying physics ? 
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Second junction – yback (II) 
 Saturation of drift velocity close to strips can be exploited to determine the 

importance of the second peak. 

 The height of the second peak increases with fluence – electric field becomes 

higher. 
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Neutral active bulk 
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 The electric field in active bulk becomes larger at high fluences. 

 Values of electric field of order 0.2-0.3 V/mm in the active bulk.  

~0.3 V/mm 
~0.2 V/mm 

vsat  

vmin 

vsat at the highest voltage at each fluence 



Modeling  
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STEP 3. – Set the function  Neff(y<yact) 
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

 determines how much voltage drops over the active region and 

correspondingly over the bulk and back region 

STEP 4. – Set the Neff (y>yback) and fix  in such a way that vmin/vsat and 

vback/vsat are in agreement with measurements (see previous plots). 



Modeling (II) 

 The qualitative agreement between the measured and modeled velocity 

profile is reasonable: 

 measured drift velocity does not rise so sharply for y<yact  

 measured values are normalized to 1 for velocity at strips 
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=0.96,0.942,0.925,0.9 

Neff(y>yback)= 

0.65,1.5,1.6,2.6 e12 cm-3 
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Modeling (III) 
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Better agreement with linear space charge – E close to multiplication threshold.  

500 V 500 V 



Conclusions & future work 
 A simple model that gives reasonable agreement with measured velocity 

profiles in heavily neutron irradiated silicon n-p detectors has been 

presented. 

 The “standard” device model of the electric field works up to 1-2x1015 cm-2 

 active bulk is present already at lower fluences, but the electric fields are smaller 

 the measured introduction rates of negative space charge is in agreement with 

RD48/50 data 

 Simulation of signal in the modeled electric field including impact ionization 

 C++ code for modeling: 

 Search for the parameters (minimization) 

 calculate the space charge distribution for given voltage fluence/annealing step 

 Publication of the code a root library  

 Modeling charged hadron irradiated detectors. 
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Charge collection profiles for irradiated sensors  
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Note that charge collection profiles depend on fluence. 


