

SMI – STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSICS

Tau anomalous magnetic moment measurements in ultra-peripheral collisions with ALICE at the LHC SMI retreat 2023

Roman Lavička^{*} In collaboration with Paul Bühler*, Evgeny Kryshent, Nazar Burmasovt

March 21, 2023, Traunkirchen, Austria

This work is supported by the Austrian Science Fund (FWF, I 5277-N) and the Russian Foundation for Basic Research (RFBR, project No. 21-52-14006).

Anomalous magnetic moment

■ Magnetic dipole moment μ :

$$
\mu = g \frac{e}{2m} \mathbf{s}.
$$

 g - gyromagnetic factor, e - elementary charge, m - mass, s - spin

Under Dirac assumption (point-like particle, spin $1/2$) $g = 2$.

Anomalous magnetic moment

■ Magnetic dipole moment μ :

$$
\mu = g \frac{e}{2 m} \mathbf{s}.
$$

 g - gyromagnetic factor, e - elementary charge, m - mass, s - spin Under Dirac assumption (point-like particle, spin $1/2$) $g = 2$.

Anomalous magnetic moment:

$$
a=\frac{g-2}{2}.
$$

Standard Model prediction:

 $a = a^{{\sf QED}} + a^{{\sf EW}} + a^{{\sf Hadron\ loops}}$

Anomalous magnetic moment

■ Magnetic dipole moment μ :

$$
\mu = g \frac{e}{2 m} \mathbf{s}.
$$

 g - gyromagnetic factor, e - elementary charge, m - mass, s - spin Under Dirac assumption (point-like particle, spin $1/2$) $g = 2$.

Anomalous magnetic moment:

$$
a=\frac{g-2}{2}
$$

.

Standard Model prediction:

$$
a = a^{\text{QED}} + a^{\text{EW}} + a^{\text{Hadron loops}} + a^{??}
$$

Photon and (I)epton loops (three (f)lavours).

$$
a^{QED} = A_1 + A_2 \left(\frac{m_{l,f=1}}{m_{l,f=2}} \right) + A_2 \left(\frac{m_{l,f=1}}{m_{l,f=3}} \right) + A_3 \left(\frac{m_{l,f=1}}{m_{l,f=2}}, \frac{m_{l,f=1}}{m_{l,f=3}} \right)
$$

 A_1 - only photon loops (no mass and flavour dependency). Expansion as power series in *α*/*π*:

$$
A_i = A_i^{(2)} \left(\frac{\alpha}{\pi} \right) + A_i^{(4)} \left(\frac{\alpha}{\pi} \right)^2 + \dots
$$

Photon and (I)epton loops (three (f)lavours).

$$
a^{\text{QED}} = A_1 + A_2 \left(\frac{m_{l,f=1}}{m_{l,f=2}} \right) + A_2 \left(\frac{m_{l,f=1}}{m_{l,f=3}} \right) + A_3 \left(\frac{m_{l,f=1}}{m_{l,f=2}}, \frac{m_{l,f=1}}{m_{l,f=3}} \right)
$$

 A_1 - only photon loops (no mass and flavour dependency). Expansion as power series in *α*/*π*:

$$
A_i = A_i^{(2)} \left(\frac{\alpha}{\pi} \right) + A_i^{(4)} \left(\frac{\alpha}{\pi} \right)^2 + \dots
$$

Only one diagram in the lowest order. $A_1^{(2)}=1/2.$

Schwinger, Phys. Rev. 73, 416 (1948).

Photon and (I)epton loops (three (f) lavours).

$$
a^{QED} = A_1 + A_2 \left(\frac{m_{l,f=1}}{m_{l,f=2}} \right) + A_2 \left(\frac{m_{l,f=1}}{m_{l,f=3}} \right) + A_3 \left(\frac{m_{l,f=1}}{m_{l,f=2}}, \frac{m_{l,f=1}}{m_{l,f=3}} \right)
$$

 A_1 - only photon loops (no mass and flavour dependency). Expansion as power series in *α*/*π*:

$$
A_i = A_i^{(2)} \left(\frac{\alpha}{\pi} \right) + A_i^{(4)} \left(\frac{\alpha}{\pi} \right)^2 + \dots
$$

Only one diagram in the lowest order.

$$
A_1^{(2)} = 1/2.
$$

Schwinger, Phys. Rev. 73, 416 (1948).

■ Very apprehensive wife.

 \blacksquare The two-loop order example (8 diagrams in total):

The three-loop order:

- **More than one hundred diagrams.**
- Analytic computations required three decades...

Electroweak contribution

Loops with W^\pm , Z, H, goldstone bosones...

- Wrt. QED, EW contribution is proportional to $\sim (m_{\rm I}/m_W)^2$.
- For electron, this contribution is strongly suppressed!
- For tauon, on the level of the three-loop order.

Eidelman, et al.: Phys. Lett. A 22 (2007) 159-179

Phys. al.:

idelman

 (2007) 159-179

22

Hadron contribution

Hadronic vacuum polarization, light-by-light, higher orders loops...

- Calculations based on experimental results.
- For electron, again, this contribution is strongly suppressed!

Lepton family overview

Difference of Standard Model and observations:

- Compositeness of leptons (hint at neutron inner structure)?
- New physics Beyond Standard Model (BSM)?
- BSM scales with $(m_{\text{lepton}}^2/m_{\Lambda}^2)$, where m_{Λ} is the mass scale of BSM particles. $e: u = 1:42750$ $\mu : \tau = 1 : 280$

Higher mass of lepton \rightarrow **reaching lower scale** \rightarrow **better sensitivity to BSM.**

 a_e experimental value: Hanneke *et al.*: Phys. Rev. A 83, 052122 (2011) a*^µ* experimental value: Muon g-2: Phys. Rev. Let. 126, 141801 (2021) a*^τ* experimental value: DELPHI: Eur. Phys. J. C 35, 159-170 (2004)

Measurement method: Precession

- Three possible movements around Euler angles.
- Rotation R, precession P and nutation N.
- A magnetic dipole (particle with spin and momentum) in an external magnetic field $\vec{B} \rightarrow$ precession.

$$
\vec{\omega}_a = -a_\mu \frac{q \vec{B}}{m}.
$$

- Through precession frequency $\vec{\omega}_a$ you measure anomalous magnetic moment a*µ*.
- **Highly uniform magnetic field** \vec{B} **needed!**
- **Penning traps, storage rings...**
- Possible for electrons and muons $(2 \times 10^{-6}$ s), tauons have too short lifetime $(3 \times 10^{-13} s)$.

Heavy-ion tool

- Ultra-peripheral collisions (UPCs).
	- Impact parameter $b > R_A + R_B$.
	- Strong interaction suppressed.
	- **EM** interaction remains.
- **EM** field of ultra-relativistic electrically charged particle \sim flux of photons.
	- Interaction intensity increasing with Z^2 .
- **Many measurements at ALICE already.**
	- **Photon used as a probe to inner** structure of hadrons/ions.
	- **Appreciate addition to HERA/EIC.**
	- **Proof of usefulness of this tool.**

Measurement method: Differential cross section of *τ* production

Proposed for LHC (and SSC) in 1991, del Aguilla et al.: Phys. Lett. B 271 (1991) 256.

- SM effective field theory (SMEFT), Bereford et al.: Phys. Rev. D 102, (2020) 113008.
- Direct calculation, Dyndal et al.: Phys. Lett. B 809, (2020) 135682.

$$
i\Gamma_{\mu}^{(\gamma\tau\tau)}(q) = -ie\left[\gamma_{\mu}F_1(q^2) + \frac{i}{2m_{\tau}}\sigma_{\mu\nu}q^{\nu}F_2(q^2) + \frac{1}{2m_{\tau}}\gamma^5\sigma_{\mu\nu}q^{\nu}F_3(q^2)\right] \qquad F_2(q^2 \to 0) = a_{\tau}
$$

a*^τ* connection to cross section

Non-trivial, but observable dependency on W, $z = \cos \theta$ (in $\gamma \gamma$ CM frame).

Dyndal et al.: Phys. Lett. B 809, (2020) 135682.

Roman Laviˇcka 14 / 29

p_T -spectrum sensitivity to a_T

New possible limits by ATLAS/CMS and its comparison to current values

- <code>ATLAS/CMS</code> Run 2 statistics estimates: 1280 events (2 <code>nb $^{-1}$).</code>
- Systematics can strongly limits this measurement.

ALICE possibilities

PID

- Electron, μ/π , proton and kaon can be distinguished with TPC+TOF for $p_T < 1.5$ GeV.
- **TPC** for electron and μ/π and TOF for electron $/\mu/\pi$ and proton and kaon.
- Not possible to distinguish μ/π .

Roman Laviˇcka 19 / 29

Event selection strategy

ALICE strategy:

- **Exclusivity requirement: to avoid** $\gamma\gamma \rightarrow q\bar{q}$ **(or UPCs dipion), one decay is leptonic.**
- **Midrapidity:** Separation of μ and π with central barrel impossible \rightarrow looking for e lectron(positron) + charged track (muon/pion).
- Semi-forward rapidity: Forward muon $+$ charged track in central barrel.
- Forward rapidity: Only muon channel \rightarrow suppressed to other cases.

Simulations: Run 3 2022 Pb–Pb collisions, 2.3 nb⁻¹

■ Our simulations reproduce well those used for ATLAS/CMS.

\blacksquare Roman Lavička $21 / 29$

Simulations: Run 3 2022 Pb–Pb collisions, 2.3 nb⁻¹

- 36 000 events in central barrel (electron $+$ muon/pion).
- 2 000 events in semi-forward rapidity (two muons).

Roman Laviˇcka 22 / 29

Suppressing background - acoplanarity cut

Bereford et al.: Phys. Rev. D 102, (2020) 113008.

Simulations: Run 3 acoplanarity and p_T selection

Still many events available after selection criteria.

Simulations: Run 3 a_{τ} and cross section ratio p_{τ} dependency

- **Parabolic shape of ratio of electron p_T-differential cross sections in the vicinity of** $a_{\tau} = 0$ **.**
- Up to 15% variations of the yields within the range restricted by DELPHI limits.

Simulations: Run 3 differential p_T -spectrum

- We can also try to perform p_T -differential measurement.
- A lot of low- p_T events, where ALICE has a good sensitivity.
- Positive $a_τ$ cross sections above Standard Model.
- Negative a_{τ} p_T-differential cross section distribution steeper than Standard Model.

Simulations: Run $3+4$ a_{τ} limits from p_{τ} -differential measurement

- Combining the cross section ratios of different p_T intervals.
- Using χ^2 sum of 10 $p_{\rm T}$ intervals.
- **Uncorrelated systematics.**
- **Limits improvement looks feasible.**

Summary

- Determination of anomalous magnetic moment is a powerful check of Standard Model.
- \blacksquare Heavy weight of tau-lepton provides the best sensitivity.
- **LHC** beams together with the ALICE detector with good low-momentum resolution provides us a unique opportunity for a competitive measurement.
- \blacksquare Pb–Pb collisions in upcoming Run 3+4 will deliver enough luminosity to try to improve the current experimental limits $2-8 \times$.
- \blacksquare There is still some work to do before 2022 data-taking:
	- Fine-tune our simulations to have a great control on possible systematic effects.
	- **Understanding the background in detail.**
	- **In Identifying the best selection criteria.**

Time for your questions, please

back up

Electron and fine-structure constant *α*

- Electron trapped in cyclotron.
- You only need to measure the spin and cyclotron frequency.
- QED contribution dominates.
- a QED proportional to *α*.
- **Measurement of electron anomalous** magnetic moment allows us a direct access to fine-structure constant!
- Measured with an accuracy to 12 digits.
- The most precise measurement of a constant in the history of physics.
- $\alpha^{-1}=1$ 37.035999084 (51)

Muon and the latest evidence of BSM

- **Example: Fermilab Muon** $g 2$ **Collaboration, details: Phys. Rev. D 103, 072002 (2021).**
- (Almost) exclusively $\mu^\pm \rightarrow \mathsf{e}^\pm + \bar{\nu}_{\mathsf{e}/\mu} + \nu_{\mu/\mathsf{e}}$, $\gamma \approx 30 \rightarrow \bar{\tau}_{\tau} = 60 \times 10^{-6}$ s.
- **Measurement of the positron energy spectrum.**
- **Muon spin and momentum** aligned $=$ spectrum easiest.
- **Muon spin and momentum** $anti\text{-}aligned = spectrum$ steepest.
- \blacksquare N events in certain energy interval is changing with time.
- **Modulation frequency =** $\vec{\omega}_a$ **.**
- 4.2 σ strong evidence!
- Other explanation within QCD: arXiv:2002.12347

