BSM Searches with Thorium-229

Joachim Kopp (CERN & JGU Mainz) 13 January 2025

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU

Progress in Atomic Clocks

2

Optical Lattice Clocks

Image: Wikimedia Commons

3

Optical Lattice Clocks

- ultra-narrow atomic transition ("clock transition")
- clock laser pulses start/stop **Raman oscillations**
- detection pulse excites atoms remaining in ${}^{1}S_{0}$
- observe fluorescence intensity (= phase of Raman oscillations)
 - repeat.

Sr-87 atomic clock

Image: Wikimedia Commons

Sr-87 atomic clock

Image: Wikimedia Commons

Th-229 nuclear clock

Image: Beeks et al. 2021

- ΔE low enough for laser excitation (~8 eV)
- Advantages
 - radiative decay ultra-narrow ($\Gamma \sim 10^{-27} \text{ eV}$) 0
 - nucleus offers excellent shielding from environmental noise Ο
 - Challenges
 - Th-229m dominantly decays too quickly via IC work with Th-229 ions \rightarrow embed thorium in materials with band gap > 8 eV
 - Th-229 production either from U-233 stocks (~750 g exist in the world) or at accelerators (trace amounts)

Beeks et al. 2021 Thirolf et al. 2024

The isomeric transition in Th-229 is the only known nuclear transition with

- 2016: proof of existence of Th-299m (via IC decay)
- 2022: first observation of *radiative* Th-229m decay at ISOLDE
- 2024: first laser excitation

von der Wense et al. 2016

Kraemer et al. 2022

Tideau et al. 2024

Elwell et al. 2024

Zhang et al. 2024

New Physics Searches with Atomic Clocks

- atomic clocks measure transition frequencies with extreme precision (via Raman oscillations)
- extremely sensitive to tiny variations, especially time-dependent variations example: ultra-light dark matter field ϕ

$$\mathscr{L}_{\text{Pl}} \in d_g \frac{\phi}{M_{\text{Pl}}} \frac{\alpha_s}{\pi} GG \implies d_g \frac{m_n}{M_{\text{Pl}}} \phi \bar{n} m_g$$

$$\mathscr{L}_{axion} \in \frac{a}{32\pi^2 f} G\tilde{G} \implies \frac{m_n}{f} a \,\bar{n}\gamma_5 n$$

effective variation of fundamental constants

coherent ϕ background behaves as classical field: $\phi \sim \phi_0 \cos(m_{\phi} t)$

New Physics Searches with Atomic Clocks

- atomic clocks measure transition frequencies with extreme precision (via Raman oscillations)
- extremely sensitive to tiny variations, especia o oscillating pion mass Kim Perez 2022 $\frac{\delta m_{\pi}^2}{m_{\pi}^2} = -\frac{m_u m_d}{2(m_u + m_d)^2} \theta^2$ example: ultra-light dark matter field φ

$$\mathscr{L}_{\mathrm{Pl}} \in d_g \frac{\phi}{M_{\mathrm{Pl}}} \frac{\alpha_s}{\pi} GG \implies d_g \frac{m_n}{M_{\mathrm{Pl}}} \phi \bar{n} n$$
$$\mathscr{L}_{\mathrm{axion}} \in \frac{a}{32\pi^2 f} G\tilde{G} \implies \frac{m_n}{f} a \bar{n} \gamma_5 n$$

coherent ϕ background behaves as classical field: $\phi \sim \phi_0 \cos(m_{\phi} t)$ effective variation of fundamental constants

- o leads to oscillating proton mass and g-factor
- o results in oscillating atomic transition frequencies

New Physics Searches with Atomic Clocks

$\mathscr{L}_{axion}^{eff} \in 10^{-3} \theta^2(t) m_N \bar{n}n$

9

New Physics Searches with Nuclear Clocks

- Low transition energy presumably due to fine-tuned cancellation between strong and electromagnetic contribution
- new physics that affects one but not the other breaks this tuning hugely enhanced sensitivity (by factor ~ MeV / 8 eV)
- to meaningfully interpret nuclear clock data in the context of BSM physics, this enhancement factor needs to be known

Fuchs et al. 2024 Caputo et al. 2024

10

Modeling the Th-229 Nucleus

- Estimating nuclear contribution to ΔE hopeless \rightarrow focus on e.m. contribution simplest approach: a geometric model
- model Th-229 as ellipsoid with varying charge density Ο

$$\rho(r,\theta) = rac{
ho_0}{1 + \exp\left(rac{r - R(\theta)}{z}\right)}$$

measured charge radius and quadrupole moment fix two parameters (e.g. R_0 and β_2) 0 independently for ground state and isomer

$$\langle r^2 \rangle \equiv \frac{1}{e \, Z} \, \int d^3 {\bf r} \, r^2 \rho(r,\theta)$$

compute Coulomb energy difference between the two states 0

 $E_{\rm em} \simeq E_{\rm C}[\langle r^2 \rangle, Q_0, z, \beta_3, \beta_4]$

 $R(\theta) = R_0 [1 + \beta_2 Y_{20}(\theta) + \beta_3 Y_{30}(\theta) + \beta_4 Y_{40}(\theta) + \dots]$

$$Q_0 \equiv \int d^3 \mathbf{r} \, r^2 \rho(r,\theta) \left[3\cos^2(\theta) - 1 \right]$$

$$= \frac{1}{2} \int d^3 \mathbf{r} \, d^3 \mathbf{r}' \, \frac{\rho(r,\theta) \, \rho(r',\theta')}{|\mathbf{r} - \mathbf{r}'|}$$

Joachim Kopp — The Weakly Interacting Universe

11

Modeling the Th-229 Nucleus

Additional nuclear shape information needed to refine the model

Caputo et al. 2024

Halo Model for Th-229

treat Th-229 as inert Th-228 core, orbited by halo neutron spins of g.s. (5/2) and isomer (3/2) suggest spin flip of halo neutron 0 0 charge distribution of g.s. and isomer identical in this model except for the spin-orbit coupling

$$\rho_{\rm SO} = \frac{\mu_n}{2m_n^2} i\sigma_{\alpha\beta} \cdot \left[\left(\nabla \Phi_{\alpha}^{\dagger} \right) \times \left(\nabla \Phi_{\beta} \right) \right]$$

 $\langle r^2 \rangle$ and Q_0 are *independent* of the neutron wave function (the same is *not* true for higher moments)

Caputo et al. 2024

- neutron separation energies (Th-229: 5.2 MeV; Th-228: 7.1 MeV) lend further support

Ong Berengut Flambaum 2010

Halo Model for Th-229

treat Th-229 as inert Th-228 core, orbited by halo neutron Verification

Spin–orbit contribution to the transition energy

$$E_{\rm SO} = \frac{e\,\mu_n}{2m_n^2} \frac{1}{2} \left[j(j+1) - l(l+1) - \frac{3}{4} \right] \int_0^\infty \left[\frac{[u(r)]^2}{r} \frac{dV_{\rm C}}{dr} \right] dr$$

$$\Delta E_{\rm SO} = E_{\rm SO}|_{j=5/2} - E_{\rm SO}|_{j=3/2} \approx 1$$

- $\langle r^2 \rangle^{iso} \langle r^2 \rangle^{g.s.} = 0.0047 \text{ fm}^2 \leftrightarrow \text{experimentally: } 0.012(2) \text{ fm}^2$
 - $Q_0^{iso} Q_0^{g.s.} = 0.185 \text{ fm}^2 \leftrightarrow \text{experimentally: } 0.175525(6) \text{ fm}^2$

 $44 p \,\mathrm{keV}$ $\sim 10^4$

Halo Model for Th-229

treat Th-229 as inert Th-228 core, orbited by halo neutron Verification

 $Q_0^{iso} - Q_0^{g.s.} = 0.185 \text{ fm}^2 \leftrightarrow \text{experimentally: } 0.17$

Spin–orbit contribution to the transition energy

$$E_{\rm SO} = \frac{e\,\mu_n}{2m_n^2} \frac{1}{2} \left[j(j+1) - l(l+1) - \frac{1}{2m_n^2} \right]$$

$$\Delta E_{\rm SO} = E_{\rm SO}|_{j=5/2} - E_{\rm SO}|_{j=3/2} \approx 1$$

Caputo et al. 2024

 $\langle r^2 \rangle^{iso} - \langle r^2 \rangle^{g.s.} = 0.0047 \text{ fm}^2 \leftrightarrow \text{experimentally: } 0.012(2) \text{ fm}^2$

Conclusions

- we're witnessing a revolution in AMO physics
- contributions to the energy of Th-229m hugely enhanced sensitivity

two models

- geometric model depends crucially on nuclear shape 0
- halo model 0
- both predict enhancement factors ~10⁴ (with large uncertainties still me more detailed nuclear modelling desirable)

New Physics could break fine-tuned cancellations between strong and e.m.

Thank You!

