## Physics cases and plans for the **ALICE 3 detector at LHC**

# Nik hef





#### Alessandro Grelli On behalf of the ALICE Collaboration



## **ALICE in LHC Run 3**

### ALICE 2

- technology



| R    | un 4 |      | LS   | 3    | Run 5 |      |      |      |      |    |
|------|------|------|------|------|-------|------|------|------|------|----|
| 2031 | 2032 | 2033 | 2034 | 2035 | 2036  | 2037 | 2038 | 2039 | 2040 | 20 |





## **ALICE in LHC Run 3**

- Integrated Pb-Pb luminosity in line with expectations
- Observables statistical uncertainty largely improved



ALI-PREL-571877

Nuclear Shape and BSM Searches at Colliders

CERN





**ALI-PERF-568632** 

## ALICE 2.1: ITS3 & FoCAL



**Nuclear Shape and BSM Searches at Colliders** 

CERN





## Inner Tracking System: ITS3



towards ALICE 3

CERN

4

**Nuclear Shape and BSM Searches at Colliders** 





## ALICE @ LHC Run 4

 $\checkmark$  Precision era for many standard observables (e.g  $R_{AA}$  and  $v_2$ ). In addition:

- Advances on medium effects and hadrochemistry of single charm
- thermal radiation from the quark-gluon plasma
- Advances on **collectivity** from small to large systems



5

Many more questions will remain open!

CERN

**Nuclear Shape and BSM Searches at Colliders** 





#### What will remain open after LHC Run 4? .. and what we need to tackle it

- Ş hadronisation?
  - diffusion phenomena -> Needs precision measurements of beauty quark
- Ş exotic hadrons
- Ş heavy flavour would give just an average picture so we need multi-differential electromagnetic radiation



How to establish a firm connection between parton transport, collective phenomena and

Requires extension of the study of parton energy loss down to momenta typical of

Do we understand hadron formation from deconfined QGP? -> Needs multi charm hadrons,

Complete picture of the temperature dependence of QGP bulk and shear viscosities? ->





## And much more:

- Chiral symmetry restoration? -> Needs precise measurement in the di-lepton sector Origin of collectivity in small systems? -> Needs large phase space, high data rate What is the nature of the hadron-hadron potential in the charm sector? -> Needs large
- Ģ Ģ Ģ phase space, high data rate
- Can we push the studies of anti-hyper nuclei and investigate the possible existence of Ģ super nuclei? -> High data rate, state-of-art tracking and particle identification
- Physics Bejond Standard Model -> High data rate, state-of-art tracking

We need a large acceptance, fast and precise detector

















## **Toward LHC Run 5: ALICE 3**



|  | - |  |
|--|---|--|
|  | - |  |

|      | AL   | <b>ICE 2</b> | 1    |      | 1    |      | ALI  | <b>CE 2.</b> 1 |      | 1    |      |      | l    | l    | ALIC | CE 3 | 1    |      |
|------|------|--------------|------|------|------|------|------|----------------|------|------|------|------|------|------|------|------|------|------|
|      | R    | un 3         |      |      |      | LS 3 |      |                | R    | un 4 |      | LS   | 3    |      |      | Ru   | n 5  |      |
| 2022 | 2023 | 2024         | 2025 | 2026 | 2027 | 2028 | 2029 | 2030           | 2031 | 2032 | 2033 | 2034 | 2035 | 2036 | 2037 | 2038 | 2039 | 2040 |

**Nuclear Shape and BSM Searches at Colliders** 

CERN







## **Toward LHC Run 5: ALICE 3**



| ALICE 2 ALICE 2.1                                                    | ALICE 3                            |
|----------------------------------------------------------------------|------------------------------------|
| Run 3LS 3Run 4                                                       | LS 3 Run 5                         |
| 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 <b>2</b> | 2034 2035 2036 2037 2038 2039 2040 |

**Nuclear Shape and BSM Searches at Colliders** 

CERN

9





### ALICE 3 in a nutshell:

- Compact (~2 x 8 m) Ş
- Large acceptance, |**n**|<4, *p*<sub>T</sub> >0.04 GeV/*c* Ş
- Superconducting magnet system
- Max field: B = 2 T (0.5 T runs foreseen) Ş
- Continuous readout and online processing Ş
- Pointing resolution ~3-4  $\mu$ m and  $p_T$ Ş resolution better than 1% @1 GeV/c
- Particle Identification (PID) in a wide range Ş of momenta and  $|\eta| < 4$

10

| System            | ALICE2          | ALICE3           |  |
|-------------------|-----------------|------------------|--|
| System         pp | ALICE2<br>1 MHz | ALICE3<br>24 MHz |  |

#### Max projected LHC luminosity







## **ALICE 3 silicon tracker**



| Layer | Material                        | Intrinsic          | Barrel                | layers             | Forward d             | iscs                    | SCS                      |  |
|-------|---------------------------------|--------------------|-----------------------|--------------------|-----------------------|-------------------------|--------------------------|--|
|       | thickness<br>(%X <sub>0</sub> ) | resolution<br>(µm) | Length $(\pm z)$ (cm) | Radius (r)<br>(cm) | Position $( z )$ (cm) | R <sub>in</sub><br>(cm) | R <sub>out</sub><br>(cm) |  |
| 0     | 0.1                             | 2.5                | 50                    | 0.50               | 26                    | 0.50                    | 3                        |  |
| 1     | 0.1                             | 2.5                | 50                    | 1.20               | 30                    | 0.50                    | 3                        |  |
| 2     | 0.1                             | 2.5                | 50                    | 2.50               | 34                    | 0.50                    | 3                        |  |
| 3     | 1                               | 10                 | 124                   | 3.75               | 77                    | 5                       | 35                       |  |
| 4     | 1                               | 10                 | 124                   | 7                  | 100                   | 5                       | 35                       |  |
| 5     | 1                               | 10                 | 124                   | 12                 | 122                   | 5                       | 35                       |  |
| 6     | 1                               | 10                 | 124                   | 20                 | 150                   | 5                       | 80                       |  |
| 7     | 1                               | 10                 | 124                   | 30                 | 180                   | 5                       | 80                       |  |
| 8     | 1                               | 10                 | 264                   | 45                 | 220                   | 5                       | 80                       |  |
| 9     | 1                               | 10                 | 264                   | 60                 | 279                   | 5                       | 80                       |  |
| 10    | 1                               | 10                 | 264                   | 80                 | 340                   | 5                       | 80                       |  |
| 11    | 1                               |                    |                       |                    | 400                   | 5                       | 80                       |  |

 Table 8: Geometry and key specifications of the tracker.

#### **Nuclear Shape and BSM Searches at Colliders**

CERN

LoI: CERN-LHCC-2022-009





## **ALICE 3 silicon tracker**



| Layer | Material               | Intrinsic  | Barrel l         | ayers        | Forward d        |              |               |
|-------|------------------------|------------|------------------|--------------|------------------|--------------|---------------|
|       | thickness $(\% Y_{0})$ | resolution | Length $(\pm z)$ | Radius $(r)$ | Position $( z )$ | $R_{\rm in}$ | $R_{\rm out}$ |
|       | (%A())                 | (μ)        | (cm)             | (em)         | (CIII)           | (cm)         | (CIII)        |
| 0     | 0.1                    | 2.5        | 50               | 0.50         | 26               | 0.50         | 3             |
| 1     | 0.1                    | 2.5        | 50               | 1.20         | 30               | 0.50         | 3             |
| 2     | 0.1                    | 2.5        | 50               | 2.50         | 34               | 0.50         | 3             |
| 3     | 1                      | 10         | 124              | 3.75         | 77               | 5            | 35            |
| 4     | 1                      | 10         | 124              | 7            | 100              | 5            | 35            |
| 5     | 1                      | 10         | 124              | 12           | 122              | 5            | 35            |
| 6     | 1                      | 10         | 124              | 20           | 150              | 5            | 80            |
| 7     | 1                      | 10         | 124              | 30           | 180              | 5            | 80            |
| 8     | 1                      | 10         | 264              | 45           | 220              | 5            | 80            |
| 9     | 1                      | 10         | 264              | 60           | 279              | 5            | 80            |
| 10    | 1                      | 10         | 264              | 80           | 340              | 5            | 80            |
| 11    | 1                      |            |                  |              | 400              | 5            | 80            |

 Table 8: Geometry and key specifications of the tracker.

#### **Nuclear Shape and BSM Searches at Colliders**

CERN



LoI: CERN-LHCC-2022-009

#### 11 layers, 12 disks



## **ALICE 3 silicon tracker**



| Layer | Material                        | Intrinsic          | Barrel                | layers             | Forward d               | iscs                    |                          |
|-------|---------------------------------|--------------------|-----------------------|--------------------|-------------------------|-------------------------|--------------------------|
|       | thickness<br>(%X <sub>0</sub> ) | resolution<br>(µm) | Length $(\pm z)$ (cm) | Radius (r)<br>(cm) | Position ( $ z $ ) (cm) | R <sub>in</sub><br>(cm) | R <sub>out</sub><br>(cm) |
| 0     | 0.1                             | 2.5                | 50                    | 0.50               | 26                      | 0.50                    | 3                        |
| 1     | 0.1                             | 2.5                | 50                    | 1.20               | 30                      | 0.50                    | 3                        |
| 2     | 0.1                             | 2.5                | 50                    | 2.50               | 34                      | 0.50                    | 3                        |
| 3     | 1                               | 10                 | 124                   | 3.75               | 77                      | 5                       | 35                       |
| 4     | 1                               | 10                 | 124                   | 7                  | 100                     | 5                       | 35                       |
| 5     | 1                               | 10                 | 124                   | 12                 | 122                     | 5                       | 35                       |
| 6     | 1                               | 10                 | 124                   | 20                 | 150                     | 5                       | 80                       |
| 7     | 1                               | 10                 | 124                   | 30                 | 180                     | 5                       | 80                       |
| 8     | 1                               | 10                 | 264                   | 45                 | 220                     | 5                       | 80                       |
| 9     | 1                               | 10                 | 264                   | 60                 | 279                     | 5                       | 80                       |
| 10    | 1                               | 10                 | 264                   | 80                 | 340                     | 5                       | 80                       |
| 11    | 1                               |                    |                       |                    | 400                     | 5                       | 80                       |

 Table 8: Geometry and key specifications of the tracker.

#### **Nuclear Shape and BSM Searches at Colliders**

CERN



LoI: CERN-LHCC-2022-009

11 layers, 12 disks



### **Momentum resolution**



≤1

CERN

12

 $\gg$  With 2T field:  $p_T$  resolution for pions  $\approx 0.7\%$  at  $p_T \sim 1$  GeV/c and central rapidity, better than 1% till  $\sim |\eta|$ 

**Nuclear Shape and BSM Searches at Colliders** 



## Vertex detector



- The maximum radiation load per operational year will be about 1.5 10<sup>15</sup> 1 MeV  $n_{eq}/cm^2$ Ş
- Cooling on the outer surface of the 3rd layer (microchannel) while the layer 0 and 1 cooled via conduction on the Ş petals

13

**Nuclear Shape and BSM Searches at Colliders** 



- Ş In vacuum, *retractable*, tracker (3 layers) + 6 disks): In closed position the first layer will be at **5 mm** from the beam
- Ş Wafer-size sensors based on CMOS **Active Pixel Sensors (MAPS)** technology
- Pixel pitch of about 10 μm and ~0.1% Ş X<sub>0</sub>/layer







### Vertex detector

#### **Distance from interaction point:**

*r~15 mm during beam injection* 



- The maximum radiation load per operational year will be about 1.5 10<sup>15</sup> 1 MeV  $n_{eq}/cm^2$
- Ş petals

14



In vacuum, *retractable*, tracker (3 layers) Ş + 6 disks): In closed position the first layer will be at **5 mm** from the beam

Wafer-size sensors based on CMOS **Active Pixel Sensors (MAPS)** technology

Pixel pitch of about 10 μm and ~0.1% Ş X<sub>0</sub>/layer

13/1/2025

Cooling on the outer surface of the 3rd layer (microchannel) while the layer 0 and 1 cooled via conduction on the





### Vertex detector



- ALICE2.1
- Several R&D challenges: secondary vacuum, services, radiation load ...

CERN

15

**Nuclear Shape and BSM Searches at Colliders** 

#### LoI: CERN-LHCC-2022-009





## **Strangness tracking**



**Nuclear Shape and BSM Searches at Colliders** 

CERN

16



#### **Track strange particles in the vertex detector before their (weak)** <u>decay</u>

Full reconstruction of decay topology tracking charged strange decaying hadrons

#### Unique experimental access to multicharm hadrons with ALICE 3 in Pb-Pb collisions





13/1/2025





hef

## **Strangness tracking**



CERN



#### **Track strange particles in the vertex detector before their (weak)** <u>decay</u>

Full reconstruction of decay topology tracking charged strange decaying hadrons

#### Combined with centrality dependence or possible lighter ion runs



Nik 🗧 hef





## **Particle Identification: TOF**



- Silicon sensors with  $\sigma_{TOF} \approx 20$  ps Ş

<sup>o</sup> Nuclear Shape and BSM Searches at Colliders

CERN





## Particle Identification:RICH



- Aerogel radiator:
  - Refractive index n = 1.03 in the barrel
     Refractive index n = 1.006 at forward
- Design aimed to ensure continuous coverage with the TOF system

CERN

**Nuclear Shape and BSM Searches at Colliders** 









### **ALICE 3 measurements (a selection)**

#### **Measurements of (multi-)heavy-flavoured hadrons**

- parton propagation mechanisms in QGP
- study equilibration of heavy quark and diffusion in QGP
- mechanisms of hadronisation from the quark-gluon plasma

#### **Precision measurements of dileptons**

- accessing QGP evolution
- mechanisms of chiral symmetry (partial) restoration

#### Hadron correlations and fluctuations

interaction potentials and charmed-nuclei

#### **Beyond Standard Model**

- Input for Dark Matter searches in space
- Axion-like particles







## Heavy quark thermalisation

 $\langle r^2 \rangle = 6 D_s t$ 



21





## Heavy quark propagation



CERN

**Nuclear Shape and BSM Searches at Colliders** 

- Azimuthal angular correlation of charm quark accessed via D meson pairs
- Directly probe heavy quark transport in QGP sensitive to energy loss and thermalisation degree

$$\langle r^2 \rangle = 6 D_s t$$

Heavy-quark diffusion  $\rightarrow$  collisional broadening



$$\hat{q} = \frac{\langle q_{\perp}^2 \rangle}{\lambda}$$
 Semi-hard scattering  $\rightarrow$  radiative energy loss

Signal stronger at low  $p_T$  and advantages from large η-coverage -> unique to ALICE 3





## Heavy quark propagation



**Nuclear Shape and BSM Searches at Colliders** 

CERN

23









### **Multi-charm baryons**





 $\Omega_{cc}^+$  reconstructed in the channel:



in the case of hadronisation from QGP



CERN

24







## **Multi-charm baryons**

 $\Xi_{cc}^{++}$  reconstructed in the channel: 

 $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} \pi^{+} \rightarrow \Xi^{-} \pi^{+} \pi^{+} \pi^{+}$ 



 $\Omega_{cc}^+$  reconstructed in the channel:  $\Omega_{cc}^{+} \rightarrow \Omega_{c}^{0} \pi^{+} \rightarrow \Omega^{-} \pi^{+} \pi^{+}$ 

Predicted enhancement by order of magnitude in the case of hadronisation from QGP

In statistical hadronisation model emergence of a unique pattern, due to  $g_c^n$  and mass hierarchy

 $\Rightarrow$  testing ground for deconfinement













## Nuclei

- ALICE 3 can shed light on the sector of hyperon-nucleon and charmed-baryon nucleon interactions.
- Anti-hyper nuclei with A>5 as  $5_{\overline{A}}\overline{H}e$  or  $6\overline{Li}$  yet to be discovered
- ALICE 3 apparatus well suited for the study of  ${}^{4}_{\Lambda}$ He or  ${}^{5}_{\Lambda}$ He of interest as baseline for the study of multi-charm baryon production in QGP
- Discovery potential for super-nulei (?) like c-deuteron, c-triton and c-<sup>3</sup>He.









## Super-nuclei



#### Discovery potential for super-nulei (?) like c-deuteron, ctriton and c-<sup>3</sup>He.

If c-deuteron is bound and weakly decaying we can discover it: Significance 51 with 1 month Pb-Pb ~ 5.6 nb<sup>-1</sup>



 $nb^{-1}$ )

CERN

**Nuclear Shape and BSM Searches at Colliders** 









## **Charm hadron molecules**

- D-D momentum correlations accessible via twoparticle femtoscopy measurements
- Unique tests of long range strong interaction with rare hadrons
- Investigation of molecular nature of exotic states

Kamiya, Y., Hyodo, T. & Ohnishi, Eur. Phys. J. A 58, 131 (2022)





CERN

28



LoI: CERN-LHCC-2022-009







## **Thermal radiation**



**Nuclear Shape and BSM Searches at Colliders** 

29

CERN





#### **Electromagnetic radiation**

Access to QGP temperature before hadronisation

#### **Electron Identification**

- Time-of-flight (TOF) via silicon
- Ring-imaging Cherenkov (RICH)
- **Electromagnetic Calorimeter**

#### **HF** rejection and low-*p*<sub>T</sub> electron ID

- DCA<sub>ee</sub>: separation of e<sup>+</sup>e<sup>-</sup> pairs and HF daughters
- ALICE 3: superior pointing resolution





## **Thermal radiation**



ALI-SIMUL-498029

#### **Nuclear Shape and BSM Searches at Colliders**

29









## **Thermal radiation**



ALI-SIMUL-498029

#### **Nuclear Shape and BSM Searches at Colliders**

29













ALI-SIMUL-498029

#### **Nuclear Shape and BSM Searches at Colliders**

29





29

CERN



ALI-SIMUL-498029

**Nuclear Shape and BSM Searches at Colliders** 





## **Chiral symmetry**



- the modification of a<sub>1</sub> spectral function

30

**Nuclear Shape and BSM Searches at Colliders** 

ALICE 3 can observe chiral mixing effect and together with more differential measurements (di-electrons  $v_2$ ) constraint

![](_page_36_Picture_10.jpeg)

![](_page_36_Picture_11.jpeg)

![](_page_36_Picture_12.jpeg)

#### Anti-nuclei from b quarks:

Recent AMS discovery of cosmic-ray anti-nuclei (Anti-<sup>3</sup>He) can be a signature of the dark matter

$$\chi\chi \rightarrow b\overline{b} \rightarrow \overline{\Lambda}^0_b + X \rightarrow {}^3\overline{He} + X$$

▶ Anti-<sup>3</sup>He from  $\Lambda_b$  decays from dark matter annihilation would lead to an enhanced flux of anti-<sup>3</sup>He near earth.

▶ ALICE 3 well positioned (together with LHCb) to impose constraints on branching ratio from  $\Lambda_b$ decays.

![](_page_37_Figure_9.jpeg)

![](_page_37_Picture_11.jpeg)

![](_page_37_Picture_12.jpeg)

![](_page_37_Picture_13.jpeg)

#### Anti-nuclei from b quarks:

Recent AMS discovery of cosmic-ray anti-nuclei (Anti-<sup>3</sup>He) can be a signature of the dark matter

$$\chi\chi \rightarrow b\overline{b} \rightarrow \overline{\Lambda}^0_b + X \rightarrow {}^3\overline{He} + X$$

Anti-<sup>3</sup>He from  $\Lambda_b$  decays from dark matter annihilation would lead to an enhanced flux of anti-<sup>3</sup>He near earth.

▶ ALICE 3 well positioned (together with LHCb) to impose constraints on branching ratio from  $\Lambda_b$ decays.

![](_page_38_Figure_9.jpeg)

![](_page_38_Picture_11.jpeg)

![](_page_38_Picture_12.jpeg)

![](_page_38_Picture_14.jpeg)

### **Dark Photons**

#### 

#### **Theorised Extra-U(1) gauge bosons. Hints:**

![](_page_39_Picture_3.jpeg)

- Antiproton spectrum (AMS) and positron excess in cosmic ray (PAMELA, FERMI, AMS)
- Muon anomalous magnetic moment

#### **ALICE 3 future searches:**

- Displacement searches (M<20 MeV)
- Final-state radiation, Drell-Yan and thermal rad (M>1 GeV)

![](_page_39_Picture_9.jpeg)

Meson Decays ( $\pi^0$ ,  $\eta$ ,  $\Phi$  Dalitz decays  $D^{*0}$ , radiative  $J/\psi$  and Y decays)

![](_page_39_Figure_16.jpeg)

![](_page_39_Picture_17.jpeg)

![](_page_39_Picture_18.jpeg)

![](_page_39_Picture_19.jpeg)

#### **BSM searches in UPCs**

- Ultra peripheral collisions (UPC) clean environment plus large enhancement of  $\gamma\gamma$  rate (~10<sup>7</sup>)
  - Searches of BSM particle coupling to photons: modification of light-by-light scattering rates from virtual corrections from heavy particles (magnetic monopoles, vector-like fermions, dark particles)
  - $a_{\tau}$  ( $\tau$  anomalous magnetic moment)

measurements and possible deviation from SM by looking to 1 electron + 1 pion events in UPC. Low-p<sub>T</sub> reach and larger acceptance of ALICE 3 will improve ALICE 2 sensitivity keeping unique low-p<sub>T</sub> access compared to ATLAS/CMS

![](_page_40_Figure_8.jpeg)

![](_page_40_Figure_9.jpeg)

![](_page_40_Picture_11.jpeg)

![](_page_40_Figure_12.jpeg)

#### **BSM searches in UPCs**

![](_page_41_Figure_1.jpeg)

Lol: CERN-LHCC-2022-009

CERN

**Nuclear Shape and BSM Searches at Colliders** 

35

- - Ultra-peripheral collisions (UPCs) are dominated by photon-photon and photon-nucleus interactions. Provide for a clean environment for axion-like particles (APL) studies
  - $\mathbf{M}$  Searches via  $\mathbf{y}\mathbf{y} \rightarrow \mathbf{a} \rightarrow \mathbf{y}\mathbf{y}$  process. Signal would be visible as a peak in the diphoton mass distribution
  - Performance on the estimated production cross-section given as mass and recast limit in the plane  $(m_a, 1/\Lambda_a)$

![](_page_41_Picture_10.jpeg)

![](_page_41_Figure_11.jpeg)

![](_page_41_Figure_12.jpeg)

## Concluding

![](_page_42_Figure_1.jpeg)

CERN

![](_page_42_Picture_5.jpeg)

We come a long way in the study of QCD in extreme conditions since the starting of LHC but several question marks remain.

These questions can be addressed with a new apparatus with x3-5 increase in pointing precision, acceptance and rate capability.

ALICE 3 will allow exploiting the full power of heavy-ion collisions for QGP characterisation and open a window in BSM searches in such system.

![](_page_42_Picture_9.jpeg)

![](_page_42_Figure_10.jpeg)

![](_page_43_Picture_0.jpeg)

#### LHC machine performance

| Quantity                                                  | рр                   | 0-0                      | Ar–Ar               | Ca–Ca              | Kr–Kr                | In–In                | Xe–Xe                | Pb-Pb                |  |  |  |  |
|-----------------------------------------------------------|----------------------|--------------------------|---------------------|--------------------|----------------------|----------------------|----------------------|----------------------|--|--|--|--|
| $\sqrt{s_{\rm NN}}$ (TeV)                                 | 14.00                | 7.00                     | 6.30                | 7.00               | 6.46                 | 5.97                 | 5.86                 | 5.52                 |  |  |  |  |
| $L_{AA} (cm^{-2}s^{-1})$                                  | $3.0 \times 10^{32}$ | $1.5 \times 10^{30}$     | $3.2\times10^{29}$  | $2.8\times10^{29}$ | $8.5 \times 10^{28}$ | $5.0 \times 10^{28}$ | $3.3 \times 10^{28}$ | $1.2 \times 10^{28}$ |  |  |  |  |
| $\langle L_{\rm AA} \rangle ~({\rm cm}^{-2}{\rm s}^{-1})$ | $3.0 \times 10^{32}$ | $9.5	imes10^{29}$        | $2.0 	imes 10^{29}$ | $1.9\times10^{29}$ | $5.0	imes10^{28}$    | $2.3	imes10^{28}$    | $1.6	imes10^{28}$    | $3.3	imes10^{27}$    |  |  |  |  |
| $\mathscr{L}_{AA}^{month}$ (nb <sup>-1</sup> )            | $5.1 	imes 10^5$     | $1.6 	imes 10^3$         | $3.4 	imes 10^2$    | $3.1 	imes 10^2$   | $8.4 	imes 10^1$     | $3.9 	imes 10^1$     | $2.6 	imes 10^1$     | 5.6                  |  |  |  |  |
| $\mathscr{L}_{NN}^{month}$ (pb <sup>-1</sup> )            | 505                  | 409                      | 550                 | 500                | 510                  | 512                  | 434                  | 242                  |  |  |  |  |
| R <sub>max</sub> (kHz)                                    | 24 000               | 2169                     | 821                 | 734                | 344                  | 260                  | 187                  | 93                   |  |  |  |  |
| μ                                                         | 1.2                  | 0.21                     | 0.08                | 0.07               | 0.03                 | 0.03                 | 0.02                 | 0.01                 |  |  |  |  |
| $dN_{ch}/d\eta$ (MB)                                      | 7                    | 70                       | 151                 | 152                | 275                  | 400                  | 434                  | 682                  |  |  |  |  |
|                                                           |                      |                          |                     | at $R = 0$         | 0.5 cm               |                      |                      |                      |  |  |  |  |
| $R_{\rm hit}~({\rm MHz/cm^2})$                            | 94                   | 85                       | 69                  | 62                 | 53                   | 58                   | 46                   | 35                   |  |  |  |  |
| NIEL (1 MeV $n_{eq}/cm^2$ )                               | $1.8 \times 10^{14}$ | $1.0 \times 10^{14}$     | $8.6	imes10^{13}$   | $7.9	imes10^{13}$  | $6.0	imes10^{13}$    | $3.3 \times 10^{13}$ | $4.1 \times 10^{13}$ | $1.9 	imes 10^{13}$  |  |  |  |  |
| TID (Rad)                                                 | $5.8 	imes 10^6$     | $3.2 	imes 10^6$         | $2.8 	imes 10^6$    | $2.5	imes10^6$     | $1.9 \times 10^6$    | $1.1 \times 10^{6}$  | $1.3\times10^{6}$    | $6.1 	imes 10^5$     |  |  |  |  |
|                                                           |                      | at $R = 100 \mathrm{cm}$ |                     |                    |                      |                      |                      |                      |  |  |  |  |
| $R_{\rm hit}~(\rm kHz/cm^2)$                              | 2.4                  | 2.1                      | 1.7                 | 1.6                | 1.3                  | 1.0                  | 1.1                  | 0.9                  |  |  |  |  |
| NIEL (1 MeV n <sub>eq</sub> /cm <sup>2</sup> )            | $4.9 	imes 10^9$     | $2.5 	imes 10^9$         | $2.1 	imes 10^9$    | $2.0 	imes 10^9$   | $1.5 	imes 10^9$     | $8.3 \times 10^{8}$  | $1.0 	imes 10^9$     | $4.7	imes10^{8}$     |  |  |  |  |
| TID (Rad)                                                 | $1.4 	imes 10^2$     | $8.0 \times 10^1$        | $6.9 \times 10^1$   | $6.3\times10^{1}$  | $4.8 \times 10^{1}$  | $2.7\times10^{1}$    | $3.3\times10^{1}$    | $1.5 \times 10^1$    |  |  |  |  |

operational month (assuming a running efficiency of 65%).

#### **Nuclear Shape and BSM Searches at Colliders**

#### CERN

Table 1: Projected LHC performance: For various collision systems, we list the peak luminosity  $L_{AA}$ , the average luminosity  $\langle L_{AA} \rangle$ , the luminosity integrated per month of operation  $\mathscr{L}_{AA}^{month}$ , also rescaled to the nucleon–nucleon luminosity  $\mathscr{L}_{NN}^{month}$  (multiplying by  $A^2$ ). Furthermore, we list the maximum interaction rate  $R_{\text{max}}$ , the minimum bias (MB) charged particle pseudorapidity density  $dN/d\eta$ , and the interaction probability μ per bunch crossing. For the radii 0.5 cm and 1 m, we also list the particle fluence, the non-ionising energy loss, and the total ionising dose per

## Ni Ni

![](_page_44_Picture_7.jpeg)

### **Toward ALICE3: Radiation hardness**

![](_page_45_Figure_1.jpeg)

Sensors irradiated to different levels. (b)

**Nuclear Shape and BSM Searches at Colliders** 

CERN

- Test structures (at room temperature) Ş irradiated till 1.5 10<sup>15</sup> 1 MeV n<sub>eq</sub>/cm<sup>2</sup>
- Still > 95% efficiency at intermediate low Ş threshold at 20 degree celsius!

![](_page_45_Picture_7.jpeg)

![](_page_45_Picture_8.jpeg)

![](_page_45_Picture_10.jpeg)

![](_page_45_Figure_11.jpeg)

### $X_{c1}(3872)$

![](_page_46_Figure_1.jpeg)

ALI-SIMUL-522814

CERN

**Nuclear Shape and BSM Searches at Colliders** 

![](_page_46_Picture_6.jpeg)

![](_page_46_Picture_7.jpeg)

## **Ultra-preipheral collisions (UPC)**

- Impact parameter *b*>*R*1+*R*2 Ş Hadronic interactions suppressed
- Photon induced reactions: Ş
  - Well described in Weizsacker-Williams approximation
  - Photon flux  $Z^2$  ( $Z_{Pb}$ = 82)
  - Large gamma-induced interaction cross-section
- Rapidity gap(s) Ş

**Nuclear Shape and BSM Searches at Colliders** 

![](_page_47_Picture_9.jpeg)

![](_page_47_Picture_11.jpeg)

#### **Dark Photons**

$$L = L_{SM} - \frac{1}{4} F'_{\mu\nu} F^{'\mu\nu} + m_{A'}^2 A'_{\mu} A^{'\mu} + \frac{\epsilon}{2} F_{\mu\nu} F^{'\mu\nu}$$

Standard Model Lagrangian Additional U(1) symmetry describing the new force carried by a massive vector boson, *the Dark photon A*'

![](_page_48_Picture_4.jpeg)

**Nuclear Shape and BSM Searches at Colliders** 

CERN

Kinetic mixing term with the standard photon y

![](_page_48_Picture_8.jpeg)

#### **Dark Photons**

![](_page_49_Figure_1.jpeg)

Gabriele Piperno - PANIC 2017

CERN

Nuclear Shape and BSM Searches at Colliders

![](_page_49_Figure_5.jpeg)

R. Jacobsson (CERN) LHC Operations Workshop, Evian, 2019

![](_page_49_Picture_7.jpeg)

### т pair production

- τ pair photoproduction in Pb-Pb UPC cross section Ş scales with  $Z^4$
- Suppression by a factor  $O(\alpha_{em}^2)$ Ş
- Photon induced reactions: Ş
  - Well described in Weizsacker-Williams approximation
  - Photon flux  $Z^2$  ( $Z_{Pb}$ = 82)
  - Large gamma-induced interaction cross-section
- Sensitive to anomalous magnetic moment  $a_1 = (g-2)_1/2$ 2

![](_page_50_Figure_10.jpeg)

![](_page_50_Picture_12.jpeg)

![](_page_50_Picture_13.jpeg)

![](_page_50_Picture_14.jpeg)