Bayesian Study of Nuclear Shapes at the LHC

Govert Nijs

January 13, 2025

Based on:

- GN, van der Schee, 2112.13771, 2206.13522, 2304.06191, 2312.04623
- Giacalone, GN, van der Schee, 2305.00015, xxxx.xxxxx

・ロト ・同ト ・ヨト ・ヨ

The deformation of Xe-129 OO

The status of the field

- The general picture of the stages of a heavy ion collision is known.
- Theoretical modelling follows these stages:
 - T_RENTo or IP-Glasma for the initial state.
 - Free streaming for the pre-hydrodynamic stage.
 - Viscous hydrodynamics with temperature dependent shear and bulk viscosity.
 - SMASH or UrQMD as a hadronic afterburner.
- Recently also: modelling of the projectiles themselves.

・ロト ・同ト ・ヨト ・ヨ

The deformation of Xe-129 OO

Some basic observables

- Charged particle multiplicity dN/dy. Correlates with how much entropy is produced in the initial state.
 - Centrality is determined by multiplicity percentiles.
- Mean transverse momentum (p_T).
 Sensitive to how much the fluid is being pushed out, i.e. the pressure.
- Anisotropic flow v_n. Defined as azimuthal Fourier coefficients:

$$N(\phi) \propto \sum_n v_n \cos(n(\phi - \Psi_n)).$$

Sensitive to the initial state spatial anisotropy.

Some basic observables

- Charged particle multiplicity dN/dy. Correlates with how much entropy is produced in the initial state.
 - Centrality is determined by multiplicity percentiles.
- Mean transverse momentum (p_T).
 Sensitive to how much the fluid is being pushed out, i.e. the pressure.
- Anisotropic flow v_n. Defined as azimuthal Fourier coefficients:

$$N(\phi) \propto \sum_n v_n \cos(n(\phi - \Psi_n)).$$

Sensitive to the initial state spatial anisotropy.

Some basic observables

- Charged particle multiplicity dN/dy. Correlates with how much entropy is produced in the initial state.
 - Centrality is determined by multiplicity percentiles.
- Mean transverse momentum (p_T).
 Sensitive to how much the fluid is being pushed out, i.e. the pressure.
- Anisotropic flow v_n. Defined as azimuthal Fourier coefficients:

$$N(\phi) \propto \sum_n v_n \cos(n(\phi - \Psi_n)).$$

Sensitive to the initial state spatial anisotropy.

Model used: Trajectum

- New heavy ion code developed in Utrecht/MIT/CERN.
 - Trajectum is the old Roman name for Utrecht.
- Contains initial stage, hydrodynamics and freeze-out, as well as an analysis suite.
- Easy to use, example parameter files distributed alongside the source code.
- Fast, fully parallelized.
 - Figure (20k oversampled PbPb events at 2.76 TeV) computes on a laptop in 21h.
 - Bayesian analysis requires O(1000) similar calculations to this one.
- Publicly available at sites.google.com/ view/govertnijs/trajectum/.

TERM

Bayesian analysi 000000 Neutron skin

The deformation of Xe-129 OO

Some simple intuition

- Model details are not necessary to understand the contents of this talk.
 - We will only discuss small aspects as needed (more details in backup slides).
 - Model parameters will be colored green where they appear.
- Hydrodynamics can be intuitively understood:
 - Pressure gradients drive expansion.
 - Hotter systems expand faster, resulting in more transverse momentum.
 - Spatially anisotropic systems expand preferentially along the short axis, resulting in momentum anisotropy in the final state.

・ロト ・同ト ・ヨト ・ヨ

[Ollitrault, Phys. Rev. D 46 (1992), 229; Giacalone, GN, van der Schee, 2305.00015]

Bayesian Study of Nuclear Shapes at the LHC

The deformation of Xe-129 OO

Effects of nuclear structure on soft observables

- The STAR isobar run sparked great interest in nuclear structure in heavy ion collisions.
 - Originally intended to measure the chiral magnetic effect.
- Differences in the shapes of ⁹⁶₄₄Ru and ⁹⁶₄₀Zr lead to different shape of the initial fireball.
 - We can distinguish several possibilities for the shapes of ⁹⁶₄₄Ru and ⁹⁶₄₀Zr, with model 5 giving the best agreement.
 - Isobar nature of ⁹⁶₄₄Ru and ⁹⁶₄₀Zr leads to robust ratios insensitive to details of hydrodynamics.

The deformation of Xe-129 00

Effects of nuclear structure on soft observables

- The STAR isobar run sparked great interest in nuclear structure in heavy ion collisions.
 - Originally intended to measure the chiral magnetic effect.
- Differences in the shapes of ⁹⁶₄₄Ru and ⁹⁶₄₀Zr lead to different shape of the initial fireball.
 - We can distinguish several possibilities for the shapes of ⁹⁶/₄₄Ru and ⁹⁶/₄₀Zr, with model 5 giving the best agreement.
 - Isobar nature of ⁹⁶₄₄Ru and ⁹⁶₄₀Zr leads to robust ratios insensitive to details of hydrodynamics.

The deformation of Xe-129 00

Effects of nuclear structure on soft observables

- The STAR isobar run sparked great interest in nuclear structure in heavy ion collisions.
 - Originally intended to measure the chiral magnetic effect.
- Differences in the shapes of ⁹⁶₄₄Ru and ⁹⁶₄₀Zr lead to different shape of the initial fireball.
 - We can distinguish several possibilities for the shapes of ⁹⁶/₄₄Ru and ⁹⁶/₄₀Zr, with model 5 giving the best agreement.
 - Isobar nature of ⁹⁶/₄₄Ru and ⁹⁶/₄₀Zr leads to robust ratios insensitive to details of hydrodynamics.

The deformation of Xe-129 OO

Can we see nuclear structure without isobars?

- The isobar run was particularly sensitive to nuclear structure, because other effects approximately cancel in the ratio.
- PbPb collisions at LHC energies however are not paired with anything close in mass.
- Extraction of the ²⁰⁸Pb neutron skin from PbPb collisions alone will need to distinguish nuclear structure effects from the various model parameters.
 - Need Bayesian analysis to perform a systematic fit to take into account such correlations.

・ロト ・同ト ・ヨト ・ヨ

The deformation of Xe-129 OO

Bayesian analysis workflow

- In principle, Bayesian analysis is simply a fit to data.
- In practice the process is more complicated:
 - Generate a large number of randomly chosen parameter sets called *design points*.
 - Run the model for each one to obtain the prior.
 - Train the emulator.
 - Run the MCMC to obtain the posterior.
- The posterior then is a list of likely parameter sets.

(日)

The deformation of Xe-129 OO

Bayesian analysis workflow

- In principle, Bayesian analysis is simply a fit to data.
- In practice the process is more complicated:
 - Generate a large number of randomly chosen parameter sets called *design points*.
 - Run the model for each one to obtain the prior.
 - Train the emulator.
 - Run the MCMC to obtain the posterior.
- The posterior then is a list of likely parameter sets.

(日)

The deformation of Xe-129 OO

Bayesian analysis workflow

- In principle, Bayesian analysis is simply a fit to data.
- In practice the process is more complicated:
 - Generate a large number of randomly chosen parameter sets called *design points*.
 - Run the model for each one to obtain the prior.
 - Train the emulator.
 - Run the MCMC to obtain the posterior.
- The posterior then is a list of likely parameter sets.

The deformation of Xe-129 OO

Bayesian analysis workflow

- In principle, Bayesian analysis is simply a fit to data.
- In practice the process is more complicated:
 - Generate a large number of randomly chosen parameter sets called *design points*.
 - Run the model for each one to obtain the prior.
 - Train the emulator.
 - Run the MCMC to obtain the posterior.
- The posterior then is a list of likely parameter sets.

The deformation of Xe-129 OO

Data used: 670 individual data points

✓: data used									
🐯: data available 🛛	PbPb 2.76 TeV			Pt	PbPb 5.02 TeV			<i>p</i> Pb 5.02 TeV	
🗡: data unavailable	incl.	π^{\pm}	$ K^{\pm} $	р	incl.	$ \pi^{\pm} K^{\pm} p$		incl.	
σ	×	X	×	X	 Image: A start of the start of	X	×	X	 Image: A start of the start of
dN/dy	1	1	1	1	1	1	1	1	9
$\langle p_T \rangle$	X	1	1	1	1	1	1	1	()
$dE_T/d\eta$	 ✓ 	X	×	X	X	X	×	X	×
$\delta p_T / \langle p_T \rangle$	1	×	×	X	×	×	×	X	×
$v_{2,3,4}\{2\}$	1	B	9	9	1	B	B	9	Ð
v ₂ {4}	1	X	X	X	1	(L)	æ	8	Ð
d^2N/dp_Tdy	×	1	1	1	×	1	1	1	×
$v_2{2}(p_T)$	X	1	1	1	X	1	1	1	()
$v_3{2}(p_T)$	X	1	B	\odot	X	1	E	9	()
NSC(2,3)	B	×	×	X	1	×	×	X	Ð
NSC(2,4)	B	×	×	X	1	×	×	X	9
$\rho(v_2\{2\}^2, \langle p_T \rangle)$	×	X	×	X	 Image: A set of the set of the	X	X	X	×

Uses of Bayesian analysis: viscosities

- We know the QGP phase is described by viscous hydrodynamics.
 - We know exactly what the free parameters are, i.e. η/s, ζ/s, ...
- We can use Bayesian analysis to find data-preferred values for these parameters.
- The values of the parameters provide an interface with microscopic theories of the QGP.

(日)

Using the posterior parameter values to make predictions

- The posterior parameter values can be used to make predictions for new observables.
 - When using multiple samples from the posterior, this includes systematic uncertainty from the parameter estimation.
- Here shown is the prediction for ultracentral (p_T).

[GN, van der Schee, 2312.04623; CMS, 2401.06896] Bayesian Study of <u>Nuclear Shapes at the LHC</u>

Using the posterior parameter values to make predictions

- The posterior parameter values can be used to make predictions for new observables.
 - When using multiple samples from the posterior, this includes systematic uncertainty from the parameter estimation.
- Here shown is the prediction for ultracentral (p_T).
- Precise agreement between theory and experiment.

< 口 > < 同

[GN, van der Schee, 2312.04623; CMS, 2401.06896] Bayesian Study of Nuclear Shapes at the LHC

The deformation of Xe-129 OO

Fitting to the *p*Pb and PbPb cross sections

- In the T_RENTo model, the nucleon size is described by the Gaussian radius w.
- Previous analyses favored $w \approx 1 \, \text{fm}$.
 - This leads to a 3σ discrepancy in $\sigma_{\rm PbPb}$.
- Fitting to the *p*Pb and PbPb cross sections lowers *w* to 0.6 fm.
 - σ_{PbPb} discrepancy is reduced to 1σ .
 - Many other observables fit slightly worse.
- Smaller width is now compatible with our knowledge of the gluonic structure of the proton at low x.

< 4 ₽ < <

The deformation of Xe-129 00

Energy deposition in the initial state

Bayesian Study of Nuclear Shapes at the LHC

Govert Nijs

Neutron skin

- In a ²⁰⁸Pb nucleus, neutrons sit further from the center than protons.
 - This is quantified by the *neutron skin*:

$$\Delta r_{np} = \langle r^2 \rangle_n^{1/2} - \langle r^2 \rangle_p^{1/2},$$

i.e. the *difference* in RMS radii of the neutron and proton distributions.

• Heavy nuclei and neutron stars are sensitive to the same nuclear interactions.

- A constraint on Δr_{np} translates directly into a constraint on the radius of a $1.4M_{\odot}$ neutron star.
- We can learn something about the low *T*, high μ_B region even at LHC energies!

The deformation of Xe-129 OO

How to measure neutron skin?

- To measure the neutron skin, we need the distributions of protons and neutrons inside the nucleus.
 - The proton distribution distribution is well-known from electron scattering.
- Several different methods are in use for the neutron distribution:
 - Polarized electron scattering off ²⁰⁸Pb (PREX).
 - Photon tomography of ¹⁹⁷Au (STAR).
- Heavy ion collisions provide a completely orthogonal method.
 - Sensitive to the total matter distribution inside the nucleus.

イロト イヨト イヨト イヨ

Purely gluonic measurement.

The deformation of Xe-129 OO

The Woods-Saxon distribution

 Nucleon positions are drawn from a Woods-Saxon distribution:

$$ho_{\mathsf{WS}}(r) \propto rac{1}{1+\exp\left(rac{r-R}{a}
ight)}.$$

- We fix R for both protons and neutrons.
- We fix *a* for protons, while varying *a_n* as a parameter.
- Neutron skin $\Delta r_{np} = \langle r^2 \rangle_n^{1/2} \langle r^2 \rangle_p^{1/2}$ strongly depends on a_n :

$$\langle r^2 \rangle_{\rm WS} = rac{12a^2\operatorname{Li}_5\left(-e^{R/a}
ight)}{\operatorname{Li}_3\left(-e^{R/a}
ight)}.$$

	proton	neutron
<i>R</i> [fm]	6.68	6.69
<i>a</i> [fm]	0.447	an

Image: A matrix and a matrix

Govert Nijs

The deformation of Xe-129 OO

The Woods-Saxon distribution

 Nucleon positions are drawn from a Woods-Saxon distribution:

$$ho_{\mathsf{WS}}(r) \propto rac{1}{1+\exp\left(rac{r-R}{a}
ight)}.$$

- We fix R for both protons and neutrons.
- We fix a for protons, while varying a_n as a parameter.
- Neutron skin $\Delta r_{np} = \langle r^2 \rangle_n^{1/2} \langle r^2 \rangle_p^{1/2}$ strongly depends on a_n :

$$\langle r^2 \rangle_{\rm WS} = \frac{12a^2\operatorname{Li}_5\left(-e^{R/a}\right)}{\operatorname{Li}_3\left(-e^{R/a}\right)}.$$

(日)

The deformation of Xe-129 OO

- Initial geometry is sensitive to a_n.
 Larger nuclei lead to:
 - Larger hadronic PbPb cross-section,
 - Larger initial QGP size,
 - Smaller initial QGP eccentricity.
- Final state observables are in turn sensitive to initial geometry. Larger Δr_{np} leads to:
 - Larger hadronic PbPb cross-section,
 - Smaller charged particle yield,
 - Smaller mean transverse momentum,
 - Smaller elliptic flow.

- Initial geometry is sensitive to a_n.
 Larger nuclei lead to:
 - Larger hadronic PbPb cross-section,
 - Larger initial QGP size,
 - Smaller initial QGP eccentricity.
- Final state observables are in turn sensitive to initial geometry. Larger Δr_{np} leads to:
 - Larger hadronic PbPb cross-section,
 - Smaller charged particle yield,
 - Smaller mean transverse momentum,
 - Smaller elliptic flow.

The deformation of Xe-129 OO

- Initial geometry is sensitive to a_n.
 Larger nuclei lead to:
 - Larger hadronic PbPb cross-section,
 - Larger initial QGP size,
 - Smaller initial QGP eccentricity.
- Final state observables are in turn sensitive to initial geometry. Larger Δr_{np} leads to:
 - Larger hadronic PbPb cross-section,
 - Smaller charged particle yield,
 - Smaller mean transverse momentum,
 - Smaller elliptic flow.

- Initial geometry is sensitive to a_n.
 Larger nuclei lead to:
 - Larger hadronic PbPb cross-section,
 - Larger initial QGP size,
 - Smaller initial QGP eccentricity.
- Final state observables are in turn sensitive to initial geometry. Larger Δr_{np} leads to:
 - Larger hadronic PbPb cross-section,
 - Smaller charged particle yield,
 - Smaller mean transverse momentum,
 - Smaller elliptic flow.

The deformation of Xe-129 OO

What does a_n correlate with?

- a_n is not the only parameter affecting the initial geometry, leading to correlations. a_n:
 - anticorrelates with *p*,
 - mildly anticorrelates with both w and q.
- Correlations highlight the importance of global analysis.
- Parameters are not degenerate, allowing us to extract a_n , and with it, Δr_{np} .

The deformation of Xe-129 OO

Bayesian analysis result using LHC data

- Resulting posterior for Δr_{np} is compatible with PREX II and ab initio nuclear theory.
- Slightly stronger constraint than PREX II ($\Delta r_{np} = 0.283 \pm 0.071$).
- Result is in principle improvable with better Bayesian analyses.
 - May be hard to do in practice.
 - The current analysis already took 2M CPUh.

[Giacalone, GN, van der Schee, 2305.00015; PREX, 2102.10767; Hu et al., Nat. Phys. 18, 1196-1200 (2022)]

Bayesian Study of Nuclear Shapes at the LHC

19/22

Govert Nijs

Future improvements

• We kept R_n fixed in the present analysis.

- Bayesian analysis increases in difficulty with more parameters.
- A priori it was not clear that this approach would work.
- Decided to include only a_n in the first analysis.
- What can be expected from varying *R_n* in a future Bayesian analysis?
 - When varying R_n, as R_n grows, σ_{PbPb} increases and (p_T) decreases.
 - Smallness of of σ_{PbPb} prefers smaller R_n , possibly leading to a smaller estimate of Δr_{np} .
 - In this case bulk viscosity would need to increase to compensate for (p_T).

The deformation of ¹²⁹Xe

 We describe ¹²⁹Xe with a *deformed* Woods-Saxon distribution:

$$\begin{split} \rho_{\rm WS}(r) &\propto \frac{1}{1 + \exp\left(\frac{r - R(\theta, \phi)}{a}\right)}, \\ R(\theta, \phi) &= R\left(1 + \beta_2 \cos\gamma Y_2^0 + \beta_2 \sin\gamma Y_2^2\right), \end{split}$$

with Y_l^m spherical harmonics.

- We do not distinguish protons and neutrons.
- Observables in the central region are sensitive to β₂ and γ:
 - v_2 is sensitive to β_2 .
 - ρ_2 is sensitive to β_2 and γ .

The deformation of ¹²⁹Xe

 We describe ¹²⁹Xe with a *deformed* Woods-Saxon distribution:

$$\begin{split} \rho_{\rm WS}(r) &\propto \frac{1}{1 + \exp\left(\frac{r - R(\theta, \phi)}{a}\right)} \\ R(\theta, \phi) &= R\left(1 + \beta_2 \cos\gamma Y_2^0 + \beta_2 \sin\gamma Y_2^2\right), \end{split}$$

- with Y_l^m spherical harmonics.
 - We do not distinguish protons and neutrons.
- Observables in the central region are sensitive to β₂ and γ:
 - v_2 is sensitive to β_2 .
 - ρ_2 is sensitive to β_2 and γ .

Bayesian analysis result using LHC data

- We are able to extract the skin depth *a*.
 - Ab initio PGCM calculations yield *a* = 0.492 fm.
- The deformation parameters β_2 and γ are well constrained.
 - PGCM gives β₂ = 0.207 and γ = 26.93°.
- We can access all kinds of shape information, not just neutron skin!
- The nucleus ²²⁹Th is interesting for BSM physics. Main theory uncertainty is its β₂.

The deformation of Xe-129 ○●

Bayesian analysis result using LHC data

- We are able to extract the skin depth *a*.
 - Ab initio PGCM calculations yield *a* = 0.492 fm.
- The deformation parameters β_2 and γ are well constrained.
 - PGCM gives β₂ = 0.207 and γ = 26.93°.
- We can access all kinds of shape information, not just neutron skin!
- The nucleus ²²⁹Th is interesting for BSM physics. Main theory uncertainty is its β₂.

Backup ●	Bayesian analysis details 000		Weights 0000
Backup			

Backup

<ロ> <部> <部> < 部 > < 第 > < 第

Bayesian Study of Nuclear Shapes at the LHC

(日)

Bayesian analysis details

- 3000 design points.
- 18k events per design point.
- Every 15th design point has $10 \times$ more statistics, enabling to emulate 'hard' observables such as SC(n, m) and $\rho(v_2\{2\}^2, \langle p_T \rangle)$.

Bayesian analysis details

Trajectum details

Nucleon width and $\rho(v_n \{2\}^2, \langle p_T \rangle$

< □ > < @

Weights 0000

Error budget

[GN, van der Schee, 2110.13153]

Bayesian Study of Nuclear Shapes at the LHC

25/22

Govert Nijs

Nucleon width and $\rho(v_n \{2\}^2, \langle p_T \rangle$

Weights 0000

Posterior observables (1/3)

Bayesian Study of Nuclear Shapes at the LHC

Nucleon width and $\rho(v_n \{2\}^2, \langle p_T \rangle$

Weights 0000

Posterior observables (2/3)

Bayesian Study of Nuclear Shapes at the LHC

Nucleon width and $\rho(v_n \{2\}^2, \langle p_T \rangle$

Weights 0000

Posterior observables (3/3)

Bayesian Study of Nuclear Shapes at the LHC

Nucleon width and $\rho(v_n \{2\}^2, \langle p_T \rangle$

イロト イポト イヨト イヨ

T_RENTo initial conditions

■ Nucleons A and B become wounded with probability

$$P_{\mathsf{wounded}} = 1 - \exp\left(-\sigma_{\mathsf{gg}}\int d\mathbf{x}\,
ho_{\mathsf{A}}(\mathbf{x})
ho_{\mathsf{B}}(\mathbf{x})
ight), \quad
ho_{\mathsf{A}} \propto \exp\left(rac{-|\mathbf{x}-\mathbf{x}_{\mathsf{A}}|^2}{2w^2}
ight).$$

Each wounded nucleon desposits energy into its nucleus's *thickness function T_{A/B}*:

$$\mathcal{T}_{A/B} = \sum_{i \in ext{wounded A/B}} \gamma \exp(-|\mathbf{x}-\mathbf{x}_i|^2/2w^2),$$

with γ drawn from a gamma distribution with mean 1 and standard deviation $\sigma_{\rm fluct}.$

• Actual formulas slightly modified because each nucleon has n_c constituents

The TRENTo phenomenological ansatz

• The standard T_RENTo formula combines thickness functions of the two nuclei T_A and T_B into a *reduced thickness* T, interpreted as an energy density:

Free streaming pre-hydrodynamic stage

• T_RENTo creates matter at proper time $\tau = 0^+$.

Propagate the matter using free streaming:

$$T^{\mu
u}(x, y, au_{
m hyd}) = rac{1}{ au_{
m hyd}}\int d\phi\, \hat{
ho}^{\mu}\hat{
ho}^{
u}\mathcal{T}(x- au_{
m hyd}\cos\phi, y- au_{
m hyd}\sin\phi),$$

with

$$\hat{p}^{\mu} = \left(\begin{array}{cc} 1 & \cos \phi & \sin \phi \end{array}
ight),$$

giving us the stress tensor $T^{\mu\nu}$ at proper time $\tau = \tau_{hyd}$.

- Here $\tau_{\rm hyd}$ is the time at which hydrodynamics is started.
- The factor $1/\tau_{hyd}$ is due to longitudinal expansion.

(日)

(日)

Basics of hydrodynamics

- Hydrodynamics is the ultimate effective theory. Knowledge of the underlying microscopic theory is completely summarized in transport coefficients.
- Only conservation laws survive: equation of motion is simply

$$\partial_{\mu} T^{\mu\nu} = 0.$$

- Not enough equations to close the system. Need additional assumption of *local thermal equilibrium*.
- We write $T^{\mu\nu}$ in terms of building blocks T, u^{μ} , $g^{\mu\nu}$ and ∂_{μ} .

Nucleon width and $\rho(v_n \{2\}^2, \langle p_T \rangle)$

< ロ > < 四 > < 三 > < 三 > < 三

Hydrodynamics in the 14-moment approximation

• Define $(g^{\mu\nu} = \text{diag}(1, -1, -1, -1))$:

$$\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}, \quad \nabla^{\mu} = \Delta^{\mu\nu}\partial_{\nu}, \quad D = u^{\mu}\nabla_{\mu}, \quad \sigma^{\mu\nu} = \nabla^{\langle\mu}u^{\nu\rangle},$$

with $\langle\rangle$ symmetrizing and removing the trace.

• We solve viscous hydrodynamics without currents, i.e.

$$\partial_{\mu}T^{\mu\nu} = 0, \quad T^{\mu\nu} = eu^{\mu}u^{\nu} - (P + \Pi)\Delta^{\mu\nu} + \pi^{\mu\nu},$$

• $\pi^{\mu\nu}$ and Π follow the 14-moment approximation:

$$-\tau_{\pi}\Delta^{\mu}_{\alpha}\Delta^{\nu}_{\beta}D\pi^{\alpha\beta} = \pi^{\mu\nu} - 2\eta\sigma^{\mu\nu} + \delta_{\pi\pi}\pi^{\mu\nu}\nabla \cdot u - \phi_{7}\pi^{\langle\mu}_{\alpha}\pi^{\nu\rangle\alpha} + \tau_{\pi\pi}\pi^{\langle\mu}_{\alpha}\sigma^{\nu\rangle\alpha} - \lambda_{\pi\Pi}\Pi\sigma^{\mu\nu} -\tau_{\Pi}D\Pi = \Pi + \zeta\nabla \cdot u + \delta_{\Pi\Pi}\nabla \cdot u\Pi - \lambda_{\Pi\pi}\pi^{\mu\nu}\sigma_{\mu\nu}.$$

[Denicol, Jeon, Gale, 1403.0962] Bayesian Study of Nuclear Shapes at the LHC

		Bayesian analysis details 000	<i>Trajectum</i> details 00000●	
--	--	----------------------------------	------------------------------------	--

Particlization

- At the freeze-out temperature T_{sw} , we turn the fluid back into particles.
- Particles are sampled thermally, and boosted with the fluid velocity u^{μ} .
- We use the PTB prescription to match $\pi^{\mu\nu}$ and Π across the transition, so that $T^{\mu\nu}$ is smooth.
- After particlization, we use SMASH as a hadronic afterburner.

Nucleon width and $\rho(v_n \{2\}^2, \langle p_T \rangle$

Image: A matrix and a matrix

Weights 0000

Nucleon width and $\rho(v_n\{2\}^2, \langle p_T \rangle)$

[Giacalone, Schenke, Shen, 2111.02908] Bayesian Study of Nuclear Shapes at the LHC

Nucleon width and $\rho(v_n \{2\}^2, \langle p_T \rangle)$

Why weights?

- Higher p_T, higher centralities are harder to model theoretically.
- Experimental correlation matrix is not available.
 - Figure shows 1σ and 2σ regions for $\rho \in \{0, 0.9, -0.9, 0.99\}$, with standard deviations the same.
 - Same difference between theory and experiment can be within 1σ or outside of 2σ depending on ρ.
 - Correlated observable classes can be over/underimportant for the Bayesian analysis.

Definition of weights

In the bayesian analysis, the probability of the data given the parameter point x is given by:

$$P(D|x) = \frac{1}{\sqrt{(2\pi)^m \det \Sigma}} \exp\left(-\frac{1}{2}(y - y_{\exp})^T \Sigma^{-1}(y - y_{\exp})\right),$$

- with y the vector of observables computed from x, y_{exp} the vector of the corresponding experimental data, and Σ the combined theory/experiment covariance matrix.
- We define weights by replacing

$$P(D|x) = \frac{1}{\sqrt{(2\pi)^m \det \Sigma}} \exp\left(-\frac{1}{2}(y - y_{\exp})^T \omega \Sigma^{-1} \omega (y - y_{\exp})\right),$$

where ω is the diagonal matrix containing the weight for each observable.

• □ ▶ • 4 □ ▶ • Ξ ▶ •

Weights

Choice of weights

• We choose for weights ω :

- 1/2 for every particle identified observable.
- 1/2 for *p*_T-differential observables, and an additional
 - $(2.5 p_T[GeV])/1.5$ if $p_T > 1$ GeV.
- (100 c[%])/50 if the centrality class *c* is beyond 50%.
- Weighting only worsens the average discrepancy slightly.
- Distribution of discrepancies makes more sense.

	$\langle (y_{\text{theo}}) \rangle$	$\bar{\omega}$			
	$\sigma_{\rm AA}$ & ω	ω	σ_{AA}	neither	
$dN_{ch}/d\eta$	0.55	0.60	1.23	1.22	1.00
$dN_{\pi^{\pm},k^{\pm},p^{\pm}}/dy$	0.76	0.70	0.60	0.57	0.48
$dE_T/d\eta$	1.59	1.51	0.82	0.77	0.48
$\langle p_T \rangle_{\mathrm{ch},\pi^{\pm},K^{\pm},\rho^{\pm}}$	0.66	0.60	0.88	0.72	0.46
$\delta p_T / \langle p_T \rangle$	0.56	0.62	0.51	0.58	0.49
$v_n\{k\}$	0.58	0.51	0.54	0.49	1.00
$d^2 N_{\pi^{\pm}}/dy dp_T$	1.19	1.07	0.86	0.92	0.20
$d^2 N_{K^{\pm}}/dy dp_T$	1.41	1.27	0.79	0.73	0.20
$d^2 N_{p^{\pm}}/dy dp_T$	1.35	1.21	0.73	0.67	0.25
$v_2^{\pi^{\pm}}(p_T)$	0.81	0.74	0.46	0.44	0.19
$v_2^{K^{\pm}}(p_T)$	0.92	0.89	0.55	0.55	0.19
$v_2^{p^{\pm}}(p_T)$	0.49	0.47	0.34	0.35	0.25
$v_3^{\pi^{\pm}}(p_T)$	0.65	0.57	0.69	0.57	0.24
average	0.89	0.83	0.69	0.66	
σ_{AA}	1.13	3.80	1.53	3.40	1.00

• □ ▶ • 4 □ ▶ • Ξ ▶ •

Nucleon width and $\rho(v_n \{2\}^2, \langle p_T \rangle)$

Weights 0000

How much do weights change the posteriors?

Bayesian Study of Nuclear Shapes at the LHC