CORRELATION AND ANTICORRELATION BETWEEN STOCKS /

ECONOPHYSICS & FINANCIAL MARKETS

Financial markets can be described using principles similar to critical phenomena in physics. Critical Phenomena:

• Occur in space and time.

Focus of This Chapter:

- Moving beyond single asset analysis.
- Investigating multiple stock-price time series within a portfolio.

CROSS-CORRELATIONS IN FINANCIAL MARKETS

Importance of Cross-Correlations:

- Known to exist between pairs of stocks (and anticorrelations).
- Crucial in selecting the most efficient portfolio.

Study on Synchronization:

- Examines the synchronization in stock dynamics for a pair of stocks in a financial market. Covariance Matrix Analysis:
- Extensive study on the covariance matrix of stock returns in a given portfolio. Additional Studies:
- Detecting economic factors influencing stock prices.
- Evaluating deviations between market data and random matrix theory.

SIMULTANEOUS DYNAMICS OF PAIRS OF STOCKS Simultaneous Trading of Stocks:

- Many stocks are traded simultaneously, making it essential to study their relationships. Correlation Coefficient ($oldsymbol{
 ho}$ ij):
- Measures similarities and differences in the synchronous time evolution of two stocks.
- Specifically, it analyzes the daily logarithmic price changes of stocks i and j. Generalizing:

$$S(t) \equiv lnY(t + \Delta t) - lnY(t)$$

Based on it we can define:

$$S_i \equiv lnY_i(t) - lnY_i(t-1)$$

$$\rho_{ij} = \frac{\langle S_i S_j \rangle - \langle S_i \rangle \langle S_j \rangle}{\sqrt{\langle S_i^2 - \langle S_i \rangle^2 \rangle - \langle S_j^2 - \langle S_j \rangle^2 \rangle}}$$

Yi & Si:

- Yi: Daily closure price of stock i at time t.
- Si: Daily change in the logarithm of the price of stock i.

Time Average:

• The angular brackets represent a time average over the trading days within the analysis period.

Correlation Coefficient ($oldsymbol{
ho}$ ij):

- Ranges from -1 to 1:
 - 1: Completely correlated price changes.
 - 0: Uncorrelated price changes.
 - -1: Completely anticorrelated price changes.

DOW-JONES INDUSTRIAL AVERAGE PORTFOLIO

DJIA Stock Set:

30 stocks, resulting in 435 unique pairs of correlation coefficients ($\mathbf{\rho}$ ij). (30*29/2=435)

Summary of Correlation Values:

- Typical Maximum (**p**ij): Above 0.5, indicating positively correlated pairs.
- Typical Minimum ($\mathbf{\rho}$ ij): Close to 0, showing that anticorrelations are minimal.

>	Time period	Minimum	Maximum
	1990	0.02	0.73
	1991		0.63
	1992	-0.10	0.63
	1993	-0.16	0.63
	1994	-0.06	0.51

Fig. 12.1. Time evolution of $\ln Y(t)$ for Coca Cola (bottom curve) and Procter & Gamble (top curve) in the year 1990.

• Observed in 1990 for the pair of stocks: Coca Cola and Procter & Gamble.

Time Evolution of Stock Prices:

• Figure 12.1 illustrates the synchronized price movements (InY(t)) of both stocks.

Conclusion:

• The two stocks display remarkable synchronization in their price dynamics.

CORRELATION COEFFICIENT DISTRIBUTION (P(ρ IJ))

Table 12.1 Overview:

- Lists only minimum and maximum values of ${\bm \rho}$ ij for each time interval. Full Set Analysis:
- $P(\mathbf{p}_{ij})$: Probability density function of the 435 correlation coefficients.
- Shape: Bell-shaped curve.

Key Observations:

- The average value of ${oldsymbol{
 ho}}$ ij is slowly time-dependent.
- The standard deviation (σ) remains almost constant.

CHARACTERIZING TIME-DEPENDENT CORRELATION ($\boldsymbol{\delta}_{IJ}$)

- Time Evolution of ${oldsymbol{
 ho}}$ ij:
- ${oldsymbol{
 ho}}$ ij changes with time for all 435 pairs of stocks.
- Example: Coca Cola and Procter & Gamble analyzed over 5 years (Figure 12.2).
- Deviation of ${oldsymbol{
 ho}}$ ij (${oldsymbol{\delta}}$ ij):
- Defined as

•
$$\delta_{ij} \equiv \frac{\rho_{ij} - \langle \rho_{ij} \rangle}{\sigma}$$

- Where:
- σ standard deviation
- $\left<\rho_{ij}\right>$ is the average of ρ ij over all pairs of stocks ij in the portfolio analyzed
- Coca Cola & Procter & Gamble:
- For this pair, $\pmb{\delta}$ ij > 1 for all five years, the correlation coefficient varies

Fig. 12.2. Time evolution of $\ln Y(t)$ for Coca Cola and Procter & Gamble for the five calendar years investigated, 1990 to 1994. The value of ρ_{ij} is 0.73, 0.47, 0.28, 0.33, and 0.39 during the five years from 1990 through 1994, respectively, whereas δ_{ij} is 2.62, 1.73, 1.25, 2.44, and 2.27, respectively, during the same five years.

S&P 500 PORTFOLIO

S&P 500 Stock Set:

- 124,750 unique pairs of correlation coefficients ($oldsymbol{
ho}$ ij) for the 500 stocks.

Correlation Results:

- High Synchronization: Similar to the DJIA, pairs of stocks show strong synchronization.
- Prominent Case (1994): ρ ij = 0.82 between Homestake Mining and Placer Dome, Inc..

Anticorrelation:

- Less common than correlation.
- Strongest Anticorrelation (1990): ρ ij = -0.30 between Barrick Gold and Nynex Corporation.

	Time period	Minimum	Maximum
	1990	-0.30	0.81
>	1991	-0.29	0.74
	1992	-0.25	0.73
	1993	-0.27	0.81
	1994	-0.25	0.82

Fig. 12.3. Correlation coefficients for the S&P 500: $P(\rho_{ij})$ is shown for each of the five calendar years 1990 to 1994.

CORRELATION DISTRIBUTION IN THE S&P 500

Larger Sample Size:

• The number of correlation coefficients ($\mathbf{\rho}$ ij) is much larger than for the DJIA, providing greater statistical reliability.

P(**p**ij) PDF for S&P 500:

- Shown in Figure 12.3 for each of the five calendar years.
- Similar to the DJIA case, the center of the distribution moves slowly over time.
- The width of the distribution remains approximately constant.

STATISTICAL PROPERTIES OF CORRELATION MATRICES

Economic vs Physics Research:

- Both fields investigate the correlation matrix of returns, but with different goals.
- Economic Research Goal:
- Determine the number of k factors affecting a financial market.
- Arbitrage Pricing Theory (Ross, 1976) is commonly used.
- Arbitrage Pricing Model:
- Asset returns $oldsymbol{R_n}$ are modeled as

 $R_n = R_{n0} + B\xi_k + \epsilon_n$

Where:

- RnO : Risk-free and factor-risk premia mean returns.
- B: Matrix of factor weights.
- $\boldsymbol{\xi}_{\boldsymbol{k}}$: Time series of the k factors.
- n: Asset-specific risk

Assumptions:

Zero means for $\boldsymbol{\xi}_{\boldsymbol{k}}$ and n. No covariance between factors (cov($\boldsymbol{\xi}_{\boldsymbol{k}}, \boldsymbol{\xi}$)=0).

EIGENVALUES OF THE COVARIANCE MATRIX

Random Matrix Theory:

- Statistical properties of eigenvalues are well-documented.
- Empirical studies reveal deviations from random matrix predictions.

Arbitrage Pricing Theory:

- Dominant eigenvalues indicate a small number of economic k factors driving asset returns.
- Empirical evidence supports the presence of few k factors, including one prominent factor.

Physicists' Findings:

- Detect a prominent eigenvalue significantly larger than expected.
- Additional eigenvalues slightly exceed random matrix theory predictions.

Theoretical Insights:

- Anderson Localization Theory: Highlights importance of lowest eigenvalues.
- Eigenvectors linked to lowest eigenvalues are influenced by fewer independent elements.

DISCUSSION

Findings on Correlation and Market Dynamics

- Synchronization in Markets:
 - Significant cross-correlation exists between asset pairs.
 - Needs to be considered in financial market modeling.
- Economic Factors:
 - A small number of economic factors drive many assets.
 - Consistent with the Efficient Market Hypothesis (no direct predictability of future prices).
- Potential Market Inefficiencies:
 - Cross-correlations with time lags or precise factor dynamics could enable arbitrage opportunities.
 - Observed Deviation: Returns of large stocks tend to lead those of smaller stocks.

