

Bunch rotation studies in the PS and SPS

MD Days 04/02/2025

Jake Flowerdew, Alexandre Lasheen, Ivan Karpov,

Heiko Damerau

Acknowledgements:

PSB, CPS and SPS operators, MD coordinators

Outline

- Bunch rotation in the PS: PS-to-SPS transfer studies
 - RF parameter scans for LHC-type beam at LIU intensities.
 - Tomography as a prediction tool.
- Bunch rotation in the SPS for short AWAKE bunches
 - First implementation of 'Quadrupole pumping' bunch rotation scheme at CERN.

Bunch rotation in PS: PS-to-SPS transfer studies

Bunch rotation in the PS

PS-to-SPS transfer involves handing over from 40 MHz RF (PS) to 200 MHz RF (SPS).
Need to fit a 14 ns bunch in a 5 ns bucket.

Definition of losses in the SPS

- Fast losses: Losses observed at injection (first 50 ms)
- Slow losses: Flat bottom losses
- Acceleration losses: Uncaptured beam, lost at start of ramp.

Uncaptured

Definition of losses in the SPS

- Fast losses: Losses observed at injection (first 50 ms)
- Slow losses: Flat bottom losses
- Acceleration losses: Uncaptured beam, lost at start of ramp.

Uncaptured

Bunch rotation parameter scans at LIU intensity

- MD with LHC-type beam at 2.6×10^{11} ppb, 72 bunches scan 40 & 80 MHz delays
- < 1 % acceleration losses at LIU intensities.

Tomography during bunch shortening in PS

• Analysis ongoing to use tomography in the PS to predict acceleration losses in the SPS.

Tomography during bunch shortening in PS

- Analysis ongoing to use tomography in the PS to predict acceleration losses in the SPS.
- Good agreement between tomography prediction and measurement for single bunch.
 - Extending analysis to multi-bunch (ongoing more details at IPP).

Bunch rotation in SPS: Short bunches for AWAKE

Bunch rotation schemes

Quadrupole pumping in the PS

- Proof-of-principle demonstration of quadrupole pumping in the PS (Sep. 2024).
- Single bunch, moderate intensity (no RF linearization).
- First time at CERN!

Comparison of bunch rotation schemes in the SPS

- Tested AWAKE bunch, 1×10^{11} ppb @ 200 GeV.
- Some problems measuring shorter bunches (<0.5 ns) due to limitations of acquisition system.

Quadrupole pumping for AWAKE?

- Analysis still ongoing...
- No significant improvement over the double voltage jump or phase jump.
- However, quadrupole pumping needs shorter initial bunches to stay within linear region.
- Measurements with streak camera.

Conclusions

PS-to-SPS studies & Bunch Rotation (MD12244)

- Issues: No blocking issues.
- Status: Ongoing, reduced MDs in 2025 (multiple batches).
- > Problem is understood, resources should be focused on observation/ monitoring.

Quadrupole Pumping for Bunch Shortening in SPS (MD14123)

- Issues: MD scope acquisition limitations for bunches < 0.5 ns.
- Status: Measurements complete, analysis ongoing. Streak camera measurements would be needed to take scheme further.
- > Quadrupole pumping technique demonstrated, further work needed to see benefits.

Back up slides

PS-to-SPS losses 2024

Acceleration losses and bunch length

Comparison of Fast, Slow and Acceleration losses

Fast and Slow losses

