

<u>Mariangela Marchi, Simon</u> Albright

Acknowledgements: F. Asvesta, G. Di Giovanni, OP-PSB and all those involved in PSB and Linac4 operation.

LONGITUDINAL INSTABILITY STUDIES IN THE PSB

CONTENTS

INTRODUCTION

- Problem
- Needed MDs

2024 MDs

Instability Thresholds in different configurations

SUMMARY AND PLANS FOR 2025

INTRODUCTION - Problem

Stability studies during LS2 in the longitudinal plane do not match with current observations. → instability in single RF, predicted to be stable → dual harmonic RF restores stability but predicted to be unstable

Cycle-Time

STABLE

Open question:

05/02/2025

IPP MD Days | M. Marchi

Needed studies:

- Instabilities characterization
- Understanding of the discrepancy between simulations and measurements
- Feedback modelling

Time

Longitudinal limitation for high-intensity beams in the PSB?

INTRODUCTION - MDs

PSB longitudinal impedance model to be tested exploiting various techniques and configurations.

Cause/Effect	Longitudinal Imped
Real Part	Synchronous phase
Imaginary Part	Bunch lengthening/sho Synchrotron frequen

MDs main objectives:

- Voltage and intensity scans to identify instability thresholds
- Measurements of transient and steady-state beam loading
- Effect of cavity feedback loops on beam stability

sholds ading reproduce MDs results in simulations and optimize parameter-space for highintensity beams

PSB LLRF Servoloops

IPP MD Days | M. Marchi

Modelling purpose → macro-particle tracking simulations when loops are active possible

Example with **MD12145**: Measuring the effect of the servo loops on the quadrupole frequency shift

Time

PSB LLRF Servoloops

Measurements of single-bunch instabilities thresholds in single harmonic during PSB ramp. → Two MDs (MD10085), two RF configurations : Constant Voltage (CV) and Constant Bucket Area (CBA), after matching the bunch in Double RF.

Variable A_{bk} during acceleration, variable filling factor for constant longitudinal emittance.

05/02/2025

Cavity loops action

Constant A_{bk} during acceleration, fixed filling factor for constant longitudinal emittance.

- MD10085 (2023)
- 2 GeV cycle
- Scans in intensity, three voltage values
- Cavity servoloops in open and closed loop
- Beam loops disabled

At ~ 0.73 GeV oscillation content observed

First 100 ms with lowest and highest intensities, servoloops active

Bunches already 'unstable'

IPP MD Days | M. Marchi

8

At Flat-Top energy stability is preserved for smaller voltage in closed-loop → higher filling factor

- MD10085 (2024)
- 2 GeV cycle
- Scans in intensity (changed only with nr of turns) three filling factors
- Cavity servoloops in open and closed loop
- Beam loops enabled
- Adiabatic transition between DRF and SRF, before the start of instabilities

05/02/2025

Big bunch length oscillations at for 20 % filling factor \rightarrow expected for the low incoherent synchrotron frequency spread

10

When servoloop compensation inactive at 150 · 10¹⁰:

- 20 % still unstable
- 50 % still stable
- 70 % not possible to measure (loss)

IPP MD Days | M. Marchi

11

When servoloop compensation inactive at $200 \cdot 10^{10}$:

- 20 % still unstable
- 50 % unstable
- 70 % not possible to measure (loss)

05/02/2025

SUMMARY AND PLANS FOR 2025

- Cause of unexpected longitudinal instabilities in single harmonic under investigation
- Cavity servoloops appear to cause instabilities under certain conditions
- 2024 MDs: many short parallel sessions focused on instability characterization
- •Two RF configurations exploited to observe instability and gain information for the cavity controllers modelling
- Possibly many instability source cases spotted, further analysis and comparisons with simulations to do
- 2025 MDs plan: more data on the mechanisms of instabilities, Double RF configuration and transient effects

BACK-UP SLIDES

05/02/2025

PSB LLRF Servo-loops

Digital cavity controllers, one for each harmonic of f_{REV} (h = 1, ..., 16)

Finemet cavity

05/02/2025

. . .

IPP MD Days | M. Marchi

Set-Point

- MD10085 (2023)
- 2 GeV cycle
- Scans in intensity, three voltage values
- Cavity servoloops in open and closed loop
- Beam loops disabled

- MD10085 (2023)
- 2 GeV cycle
- Scans in intensity, three voltage values
- Cavity servoloops in open and closed loop
- Beam loops disabled

Big change in the 10 kV case

First 100 ms with intermediate intensities, servoloops closed

Huge oscillations for the 20 kV case

