

Sharing transverse emittances by crossing a 3rd Order Resonance (MD 13783)

O. Naumenko,

M. Giovannozzi, W. Hillert

Acknowledgements: A. Huschauer, F. Capoani, D. Veres, E. H. Maclean, A. Lasheen, L. Deniau, G. ladarola, and the whole OP Team!

1. Motivation

 $\epsilon_x \rightarrow \frac{\epsilon_x}{2}$, $\epsilon_y \rightarrow 2 \cdot \epsilon_y$ after crossing 3rd order resonance

- 1. Before Resonance: Phase space circular
 - In appropriate (resonant normal form) coordinates
- 2. Close to Resonance: Phase space divided into 2 areas
 - If tune varied slowly, particle emittance is preserved
- 3. Particle crossing resonance: Particle changes emittance
 - If tune varied slowly, new emittance is again preserved
- 4. After Resonance: Phase space circular
 - New emittances achieved

Universität Hamburg

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 Slide 2

2. Setup

- LHCINDIV type beam
 - ➤ 1 Bunch
 - > Low intensity (5 to 15 10^{10} protons)
 - > Variable emittance $(1 6 \mu m)$
 - Low voltage (20 kV)
 - Flat Bottom Energy (2.97 GeV)
 - $P Q_x = 6.29 Q_y = 6.145$ achieved with LEQ
 - > Shift tune from $Q_y = 6.128 \rightarrow Q_y = 6.162$
 - > XNO, XNO39, XNO55 sextupoles to excite the (1, -2) resonance

3. Results

- Theoretical prediction confirmed! • $\epsilon_x \rightarrow \frac{\epsilon_x}{2}, \epsilon_y \rightarrow 2 \cdot \epsilon_y$ for $\epsilon_{u,i} \approx 6 \ \mu m$
- PS Optics model is accurate for 3rd Order RDTs
 - Resonance Driving Terms (RDT) show good agreement between model and measurement

3. Results

- Worse performance at $\epsilon_{u,i} \approx 1 \ \mu m$
- Consistent across scans of RDT, Voltage, Crossing Time, Intensity
 - Causes:
 - Space Charge
 - Intrinsic property of emittance sharing
 - Greater effect from synchrotron motion than expected
 - Requires further study

3. Issues and Plans in 2025 Plans

- Detailed study of emittance sharing with 3rd Order Resonance, possibly 4th order
- Using TFB to perform beam splitting without exciting transverse resonance
- General organization of studies
 - Prolonged session of MDs (3-4 slots for 4-6 weeks)
 - ASAP after year end technical stop
 - Followed by detailed theoretical studies
 - > After that, repeat every 2-3 months

Issues Encountered:

- Previous cycle has strong effect on tune
 - > Fix MD to follow after certain cycle, even after supercycle change?
- Cavity control problematic
 - > ALLBC6 settings not trimable, causing trims of cavity voltages to throw errors