Bunch Rotation for AWAKE

Simon Albright, Michele Bergamaschi, Hannes Bartosik, Rama Calaga, Heiko Damerau, Gregoire Hagmann, Leandro Intelisano, <u>Ivan Karpov</u>, Alexandre Lasheen, Giulia Papotti, Arthur Spierer, Marlene Turner

Acknowledgements:

PSB, CPS and SPS operators, MD coordinators

Injectors Performance Panel MD days, 04.02.2025

Introduction

Advanced WAKEfield Experiment (AWAKE) facility uses short intense proton bunches for plasma wakefield acceleration

→ Stability of bunch length and shape for intensity range $0.5 - 3 \times 10^{11}$ is a key requirement for Run 2

Single voltage jump bunch rotation

2

Mode-coupling instability for low RF voltage

<u>M. Gadioux, SS report, 2020</u>

Low voltage configuration is prone to instability \rightarrow Higher V_{200} cures instability at a price of longer extracted bunch length Example of shot-to-shot bunch shape change (last two days of the 2023 run)

 \rightarrow Strong correlation with extraction time

Bunch rotation using double jump scheme

Proposed and tested in PS to mitigate electron cloud instabilities <u>H. Damerau, EPAC08, 2008</u>

 \rightarrow High V_{200} and V_{800} before jumps and short reproducible time with low RF voltages guarantee beam stability \rightarrow First MDs were performed at the end of 2023

→ This option requires modification 800 MHz LLRF system (synchronized RF OFF with extraction timing)

Present RF settings: flat top

 \rightarrow Double voltage jump scheme was implemented in 2024 to avoid mode-coupling instability with low RF voltage

 \rightarrow Beam stability and reproducibility was demonstrated up 3 \times 10¹¹ with σ ~175 ps

Beam parameters for AWAKE Run 2c/d

New request for beams after LS3 (<u>*E. Gschwendtner, IPP, 19.07.2024*</u>): Bunch intensity: $0.5 - 4 \times 10^{11}$ Bunch length: 1 sigma ~ 100 ps (streak camera measurement)

→ Difficult to measure with existing SPS bunch length measurement system
(25 ps time resolution, limited dynamic range, and limited bandwidth)
→ Impact of increased peak current on different SPS equipment needs to be evaluated

Ultimate performance in 2024

A new production scheme was developed to reduce longitudinal emittance and tune settings were optimized to suppress transverse emittance blowup during the cycle in PSB: \rightarrow 50 ps gain on in rms bunch length already before rotation (at the limit of stability in PS&PSB) \rightarrow Bunches with 3 \times 10¹¹ with ~90 ps rms bunch length were measured with a streak camera during AWAKE run

Summary and outlook

Double-voltage jump scheme improved stability of extracted beam parameters and opens possibility of further bunch length reduction

Combining with a smaller initial emittance in PSB, 90 ps rms bunch length was reached for 3×10^{11} and it was requested for 2025 AWAKE run

In 2025, to reach 100 ps rms bunch length for 4×10^{11} in MDs, beam stability during the whole chain needs to be probed

Final verification requires joint measurements with AWAKE streak camera

What is the policy for 400-GeV cycles in the SPS (MD1 is required...)?

Thank you for your attention!

Backup slides

First test with shorter bunches

The shortest rms bunch length is 125 ps for 3×10^{11} bunch adjusting rotation timings and increasing $V_{200} = 11$ MV (13 MV is maximum achieved during ion run in 2023) \rightarrow Further tests require full SPS RF power (4 × 1 MW + 2 × 1.6 MW) in addition with potentially reduced initial longitudinal emittance

Present RF settings: acceleration

→ Operational voltage programs are consistent with prediction
→ Unexpected "instability" correlated with presence of beam phase loop (PL) is under investigation (temporary solution: PL OFF + longitudinal damper ON)

Parameter stability

BQM reading of 0.86 ns corresponds to 4σ bunch length of 0.7 ns according to AWAKE streak camera data *(detailed comparison of measured profiles is ongoing)* \rightarrow Reproducible bunch length with a spread of $\pm 5\%$ is achieved over long period

Parameter stability

BQM reading of 0.86 ns corresponds to 4σ bunch length of 0.7 ns according to AWAKE streak camera data *(detailed comparison of measured profiles is ongoing)* \rightarrow Reproducible bunch length with a spread of $\pm 5\%$ is achieved over long period