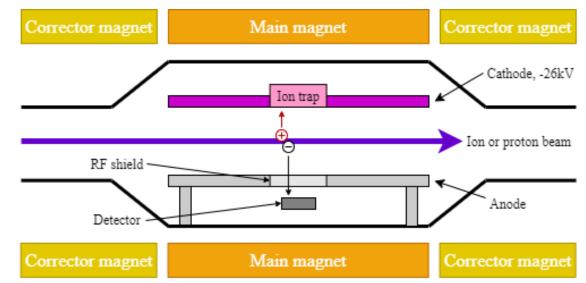


# **SPS BGI MDs**

Mark McLean (SY-BI-XEI) on behalf of the BGI team

4<sup>th</sup> February 2025


Injectors Performance Panel MD days 2025

#### **The BGI in Brief**

The **Beam Gas Ionisation Monitor** (**BGI**) is an Ionisation Profile Monitor (IPM) using **Timepix3** detectors, designed for **transverse profile measurements**.

#### **BGI Features**

- Non-destructive measurement
- Beam profile is measured by counting individual ionisation electrons
- Regular operating mode with ≥ 100 ns integration time, integrating over all bunches
- Monitor beam evolution throughout the cycle with up to 1024 profiles / cycle





#### Installation status

- YETS 2023/24: Horizontal BGI installed
- TS June 2024: Horizontal BGI moved to the vertical position, new improved instrument installed in the Horizontal position
- Both instruments show promise but are severely affected by the AWAKE and LHC25NS beams



## Nature of the problem

- The Timepix3 chips communicate with the Front-End Readout Box via many LVDS pairs inside RJ45 cables.
- Certain beams cause this communication to be temporarily disrupted, and often crash the Timepix chips, requiring a reset and re-configuration cycle before they will work again.
- We also saw evidence of corruption of the settings inside the Timepix3
- The re-configuration takes several seconds and effectively renders the instrument useless for at least the interfering beam and the subsequent beam.



## MDs performed

- The focus of the MDs was to determine what features of the beam caused the interference with the BGI
- We demonstrated a clear link with peak intensity
- A single very short (rotated) bunch was enough to cause the problem, e.g. AWAKE, where the interference came only after the bunch rotation
- Multiple intense bunches also caused it (LHC25NS)



#### Other work

- Using the SY EMC lab we made some investigations into possible mechanisms of EMC interference between the beam and the BGI electronics.
- We attempted to create interference with a simulated beam, but we did not have an RF amplifier with the necessary power and frequency range to do this.
- We did show clear evidence that EMI to the instrument's communication cables could cause a similar problem, and that the HV cable picks up a strong signal from the beam.



#### Next steps

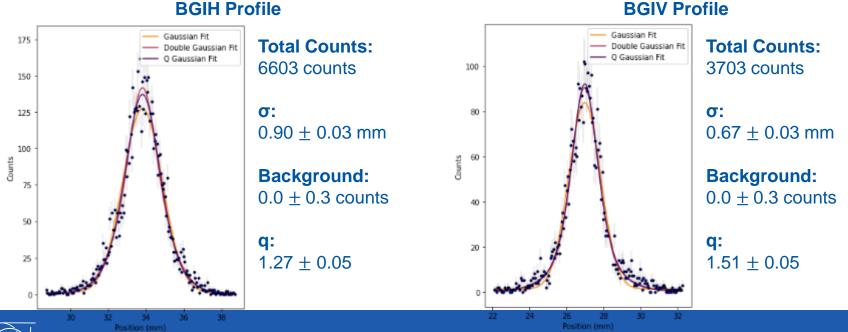
- During the current YETS we have installed a new Vertical instrument with extra internal shielding.
- We have also installed new HV, power and communication cables with improved shielding.
- We await the returning beam with fingers crossed!



# Thank you

• Thank you for the MD slots, and also for facilitating access several times during the year to make modifications to the instruments.




## Backup slides





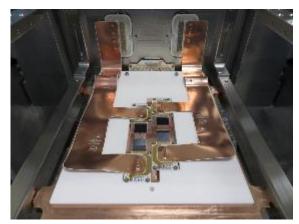
#### **PS BGI Profile Examples**

The following profiles are taken with a 36-bunch LHC-type beam at flat-top, with a 1.9 ms integration time, without gas injection.



**BGIH Profile** 




#### **SPS BGIs**

Based on the PS BGI design.

Same FESA class, ExpertGUI & OP-GUI (dev. by Marcel Coly).

Main differences to improve reliability and simplify setup:

- Improved radiation tolerant readout electronics (also deployed in the PS).
- New silicon pixel detector sensor optimised for ionisation electron detection & increased cathode operating voltage, which should:
  - Minimise "noisy" pixels;
  - Reduced chip-to-chip gain variation;
  - Improve electron detection efficiency.
- New Timepix3 detector layout to reduce readout satutation & to facilitate chip-to-chip gain equalisation.





