

IPP MD Days 2025 Dedicated MDs: COLDEX

EDMS: 3229887

V. Baglin

Injector Performance Panel MD Days, CERN, 3rd February 2025

https://indico.cern.ch/event/1488714/timetable/#20250203.detailed

2024 Conditions

Beam screen:

- Since 2021 with "thin" a-C coating ~50 nm thick with 135 nm Ti underlayer
- This is the HL-LHC base line for LSS1 and 5

COLDEX:

- Full remote control COLDEX IN/OUT without tunnel access.
- Beams:
 - 1-4 trains of 72 b, 1.6E11 ppb, at 26 GeV, nominal emittances scan batch spacing during run (200-2500 ns)
- CB at 250 K, BS at 10 K
- CO₂ pre- condensation:
 - MD#1 on 29/5/24 : No beams
 - MD#2 on 31/7/24
 - Part 1: 20 10¹⁵ CO₂/cm²
 - Part 2: 40 10¹⁵ CO₂/cm²
 - BS at 10 K and CB at 250 K during gas injection
- Expect SEY larger than 2, so large heat load

4 batches – 1.8e11 ppb – 72 b/batches – spacing 250 ns

Observation of electron current at Chimney and beam screen electrode

Electron cloud all along COLDEX for the first time with aC coating

HL-LHC PROJECT

V. Baglin, Dedicated MDs: COLDEX, MD Days, 5th February 2024

4 batches – 1.8e11 ppb – 72 b/batches – spacing 250 ns

Heat load on RT aC WAMPAC

- 0.75 °C temperature increases
- ~ 0.1 W/m
- Pressure increases in COLDEX
 - Below 10⁻¹⁰ mbar
- Heat load in COLDEX
- Decreases with time
 - 0.2 K is equivalent to 0.1 W/m

CO₂ adsorption promotes electron cloud but cleaning effect

4 batches – 1.8e11 ppb – 72 b/batches – spacing 250 ns

Observation of partial pressures

- CO₂ is cracked into O₂ and CO
- CO is the larger than CO2

4 batches – 1.8e11 ppb – 72 b/batches – spacing 250 ns

+ CO2 injection at 10⁻⁷ mbar

- Start injection at 4h20
- Beam ON at 4h35
- Similar heat load in COLDEX
- The gas injection does not seem to promote more electron cloud

High pressure operation in LHC will not trigger larger electron cloud

MD plans 2025

Objectives:

- Investigate effects due to CO and N₂ (mimic leaks) condensation
 - On Cu, measured SEY in the laboratory is
 - low for CO (less than 1.2) so low heat load
 - Large for N₂ (about 2)
 - but observation of large heat load in the past with COLDEX and CO
 important to check in-situ

M. Taborelli et al, JVSTA 30051401 (2012)

Fig. 4. (Color online) SEY of adsorbed CO on copper as a function of primary energy for different coverages.

Fig. 9. Maximum yield $\delta_{\rm max}$ as a function of $\rm CO_2$ and $\rm N_2$ coverage on copper.

Figure 4: BS heat load when 1 to 4 batches circulated with 60 10¹⁵ CO/cm² condensed onto the BS.

COLDEX Cu beam screen - EPAC 2024

25

7

2025 Conditions

HL-LHC type beams

- Injection energy, long flat bottom (~ 20 s)
- 25 ns bunch spacing
- Require stable beams with 4-5 batches and as large as possible number of bunches (72 bunches/batch).
- As close as possible to HL-LHC bunch intensities
- Side by side and opposite batches filling scheme to disentangle impedance effects
- Long period of stable beams with sequences of beam ON/beam OFF/beam ON is required to measure tiny signals (2-3 h are required to measure a point)
- CB temperature = 300 K
 - ➔ avoid condensation pumping on CB
- BS temperature at ~ 10 K
- With pre-condensed injected gas,:
 - MD1: CO injection while BS is at 10 K
 - MD2: N₂ injection while BS is at 10 K

→ Will close the COLDEX aC experimental program

2025 MD time proposal

Two dedicated MDs

- Separated by more than 3 weeks to allow data analysis and surface preparation in between
- Tentative dates:

Monday 23 June

Wednesday 23 July

(Wednesdays 30 July & 13 August are alternative dates

- Keeping the COLDEX studies during the first semester allow to maintain the cool down time to 6 months
- Possibility for the crab cavities to perform studies in parallel

Acknowledgements

A big thank you from the COLDEX team to everyone involved:

- HL-LHC project, TE and VSC management and IEFC for their long-standing strong support
- MD coordinators & BE-OP for their flexibility and beam quality
- TE-CRG, TE-VSC-ICM, IVO, BVO and SCC for permanent support & expertise

Thank you for your attention! Questions?

Thank you for your attention

V. Baglin, Dedicated MDs: COLDEX, MD Days, 5th February 2024