

Higher-intensity barrier-bucket MTE

H. Damerau, T. Gavric, A. Huschauer, A. Lasheen

IPP MD Days

05/02/25

Many thanks to Simon Albright, Foteini Asvesta and PSB/PS operations teams

Menu from 2024 MD Days

- Open issues for 2024
 - → Benchmark impact of 10 MHz cavity impedance → quick check without 1 turn delay feedback
 - \rightarrow Transition crossing optimization \rightarrow remains sensitive
 - \rightarrow Increase intensity up to 4 \cdot 10¹³ p/p \rightarrow remains sensitive
 - → RF voltage pre-distortion for flat bunch at highest intensity → first tests during second half of 2024
 - \rightarrow Intensity scan of transverse beam parameters \rightarrow 2025
 - \rightarrow Optimization of PS-SPS transfer \rightarrow 2025

Highest intensity ever accelerated

- ✓ Longitudinal stability demonstrated up to maximum intensity
- ✓ Highest intensity ever accelerated in PS beyond 4 · 10¹³ p/p

Intensity and transmission in PS

- Highest intensity in 2024: Barrier-bucket MTE with up to 4.1 10¹³ p/p extracted •
- No motivation to push higher \rightarrow above beam dump intensity limit in SPS

Transmission 2023 and 2024

Longitudinal emittance versus intensity

Increased longitudinal blow-up required to cross transition energy

- \rightarrow Transition crossing limited by losses due to transverse instabilities
- \rightarrow ~20-30% larger longitudinal emittance (90%, RMS) required at ~4 \cdot 10¹³ p/p (with respect to operational beam)

5

Optimization of barrier RF voltage

Bunch shape at extraction – is it flat?

Longitudinal bunch profile before extraction

- → Flat-bunches at operational intensity, asymmetric when increasing intensity
- → Barrier voltage pre-distortion to compensate with limited improvement → Beam is only reliable observable
- → Increased longitudinal emittance pushes particles into gap, but mainly lower RF voltage: <u>understood and corrected</u> on 06/11

7

Exotic bunch shapes

• New Finemet controller → Full control of RF voltage function during a turn

ns

Summary and 2025 MD priorities

- Above 4 · 10¹³ p/p accelerated: longitudinally stable at flat-top
 - Larger longitudinal emittance to pass transition energy
 - Gaps of Finemet cavity trip due to excessive beam loading
- Open issues for 2025
 - → **RF voltage pre-distortion optimization** at highest intensity
 - \rightarrow **Depletion of gap versus longitudinal emittance and intensity**
 - \rightarrow Intensity scan of transverse beam parameters
 - → Optimization of PS-SPS transfer
- \rightarrow No incentive to push intensity even higher (SPS dump limit)
- \rightarrow Series of parallel MDs at about 3 \cdot 10¹³ p/p \rightarrow stable conditions
- \rightarrow Transfer higher-intensity to SPS: few turns are sufficient

www.cern.ch