
Phil Elson | PyDA: The future of device access with Python | 03/02/2025

PyDA: The future of device
access with Python

Phil Elson (BE-CSS-DSB)
3rd February 2025

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

Background: Python in ATS

2

● There is a long history of Python use in the sector

● Python officially supported for operational controls 2019: Acc-Py
○ Somewhat late to the Python party
○ Since then, have fully embraced the language

■ Acc-Py has been a success by many measures
■ Today we see that most users want to be using Python instead of Java
■ Wherever it makes sense, BE-CSS are gradually working towards decoupling our

high-level controls libraries (clients) from Java

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

PyJapc

3

● Created early 2016 (Tom Levens, Michael Betz, et al.)

○ Built upon the Java API for Parameter Control (JAPC) - requires a JVM and all the controls
Java libraries to work (quite some complexity!)

● Maintained by BE-CO/BE-CSS since 2019
● Widely used for operational applications, expert tools, hardware R&D, MDs,

etc.
○ Some compelling features: it is easy to setup, has a simple interface, …
○ Some quirks*

● Breaking changes needed in order to meet all user needs, iron out the
quirks, and position it such that it could run without Java in the future

* e.g. callback interface different between get/subscribe when getHeader=True/False; arrays of length 1 are converted to scalars; stateful client; interaction with pjlsa’s

global state;

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

PyJapc v3

4

★ Ability install side-by-side with PyJapc

★ Introduce a data model which is forward looking and applies
lessons learned from JAPC

★ A chance to address some of the fundamental issues (e.g.
fixing the callback signature inconsistency)

 ➜ PyDA

“What's in a name?
That which we call a rose by any other name would
smell as sweet.”

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

PyDA development approach

● Steady and intentional
○ Not a full-time activity. Means we can gather more user input, and adapt as necessary
○ We started doing analysis on PyJapc, and the necessary breaking changes ~4 years ago
○ PyDA prototype first introduced ~3 years ago https://indico.cern.ch/event/974795
○ Numerous community updates and iterative releases since then
○ “PyDA hands-on experience in OP” presentation in Nov ‘24
○ “Fixing things” as we go (to CCDA, JAPC, RDA3, device metadata, JPype, …)

5

Goal: To arrive at a design which meets the needs of the
users, based on direct feedback from users.

Expecting a PyDA v1 this month
PyJapc reaches end-of-life at the end of Run 3

https://indico.cern.ch/event/974795/#3-python-library-for-device-ac
https://indico.cern.ch/event/1473431/#3-pyda-hands-on-experience-in

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

PyDA scope and needs

● Online device access - not a general device-data analysis framework
○ Includes conceptual ability to replay recorded and simulated data within the Python process

● A basis for future applications and services to be built upon
○ It provides a common abstraction layer, meaning that many applications could choose to not

build their own

● Prioritising API expressiveness and avoiding unnecessary statefulness

● One size does not fit all: device access needs are different for interactive
exploration vs online analysis vs those of a generic GUI
○ Scope for new and hybrid clients in the future as needed (e.g. Qt signal-slot, Jupyter

notebook specific, PyJapcScout, nicejapc, etc.)

6

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

PyDA Data model

PyDA high-level design

7

Data Sources / Providers Clients

PyDA-JAPC
(uses JPype to access JAPC)

PyDA-RDA3
(currently InCA not possible)

Future sources…

SimpleClient

CallbackClient

AsyncIOClient

Future clients…

Notes

● Not tightly bound to JAPC

● Still able to leverage the capabilities
of JAPC today (InCA/LSA for
operational settings management)

● Able to adapt as new client needs
arise

● Able to introduce new data sources
(e.g. a data replay source)

● To avoid statefulness: Requires that
the provider is passed to the client
when created (in JAPC this is global state)

“P
ro

vi
de

r A
P

I”

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

import pyda
import pyda_japc

provider = pyda_japc.JapcProvider()
client = pyda.SimpleClient(provider=provider)

response = client.get(
 'SOME.DEVICE/SomeProperty',
 context='SOME.TIMING.USER',
)

PyDA: Getting started

8

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

PyDA: Provider creation

import pyda
import pyda_japc

provider = pyda_japc.JapcProvider()
client = pyda.SimpleClient(provider=provider)

response = client.get(
 'SOME.DEVICE/SomeProperty',
 context='SOME.TIMING.USER',
)

9

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

import pyda
import pyda_japc

provider = pyda_japc.JapcProvider()
client = pyda.SimpleClient(provider=provider)

response = client.get(
 'SOME.DEVICE/SomeProperty',
 context='SOME.TIMING.USER',
)

PyDA: Instantiating a client

10

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

import pyda
import pyda_japc

provider = pyda_japc.JapcProvider()
client = pyda.SimpleClient(provider=provider)

response = client.get(
 'SOME.DEVICE/SomeProperty',
 context='SOME.TIMING.USER',
)

PyDA: Requesting device data

11

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

PyDA: The response object

12

No matter which client, the response object type is the same. Details of the type in the PyDA documentation.

https://acc-py.web.cern.ch/gitlab/acc-co/devops/python/prototypes/pyda/docs/stable/api/pyda.access.PropertyRetrievalResponse.html#pyda.access.PropertyRetrievalResponse

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

import pyda
import pyda_japc

provider = pyda_japc.JapcProvider()
client = pyda.SimpleClient(provider=provider)

response = client.get(
 'SOME.DEVICE/SomeProperty' ,
 context='SOME.TIMING.USER' ,
)

PyDA: Provider vs client

13

TIP: In general it is a lightweight
operation to create a client. Creating

a provider is more expensive.

If you ever wrote a function/interface which
accepted a PyJapc instance, it can be replaced to
accept a provider, leaving your implementation to
instantiate the most useful client for your purpose.

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

import pyda
import pyda_japc

provider = pyda_japc.JapcProvider()
client = pyda.SimpleClient(provider=provider)

response = client.get(
 'SOME.DEVICE/SomeProperty' ,
 context='SOME.TIMING.USER' ,
)

PyDA: Using the callback client

14

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

import pyda
import pyda_japc

provider = pyda_japc.JapcProvider()
callback_client = pyda.CallbackClient(provider=provider)

def summarise_response (response: pyda.access.PropertyRetrievalResponse):
 print(f'Property: {response.query.endpoint.property_name }')
 print(response.value)

callback_client.get(
 'SOME.DEVICE/SomeProperty' ,
 context='SOME.TIMING.USER' ,
 callback=summarise_response,
)

PyDA: Using the callback client

15

The signature of the callback for get, set,
and subscribe is the same: a function
which accepts a single argument (the

response object).

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

PyDA: Using the callback client

16

Subscriptions run until the
subscription handle is destroyed

import pyda
import pyda_japc

provider = pyda_japc.JapcProvider()
callback_client = pyda.CallbackClient(provider=provider)

def summarise_response (response: pyda.access.PropertyRetrievalResponse):
 print(f'Property: {response.query.endpoint.property_name }')
 print(response.value)

subscription = callback_client.subscribe(
 'SOME.DEVICE/SomeProperty' ,
 context='SOME.TIMING.USER' ,
 callback=summarise_response,
)
subs.start()

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

PyDA and device metadata

● Just like JAPC, PyDA understands more about a device than just the raw data
it receives (e.g. via RDA3)

● The metadata source is part of the provider API
○ By default, metadata is taken from the Controls Configuration Service (via PyCCDA)
○ In the future, it will also be able to take this directly from devices (FESA)

● It means we can expose richer data objects in the response (e.g.
enumerations), and can safely interpret user input (e.g. supporting Python
integers when setting values)
○ We also expose the raw values, in case there is a need (e.g. for micro optimising an app,

or device expert manipulation)

17

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

PyDA: Next steps

● Expecting to release PyDA v1 in the coming days
○ There is still work to do post-v1, but we don’t think there will need to be further breaking changes

● PyJAPC becomes end-of-life at the end of the run (mid-2026)
○ We will issue a PyJapc release this year which deprecates the library

● Explore where to go with tools built on top of PyJapc (e.g. PyJapcScout, nicejapc)

○ Some parts may no longer make sense
○ Others we may wish to extract into core libraries (e.g. PyDA, event building library)
○ Provide (more) documentation and consultancy to help migrate from PyJapc to PyDA

■ Note: We already have a migration guide in the PyDA docs

18

https://acc-py.web.cern.ch/gitlab/acc-co/devops/python/prototypes/pyda/docs/stable/migration_from_pyjapc.html

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

MDs and Python: The perfect combination?

● So far, PyDA has not had much feedback from the MD community
○ Thanks to Simon Albright for suggesting this talk!

● We would love to hear from you (on PyDA, and more broadly on the Acc-Py platform):
○ What works well?
○ What could improve your workflow during MDs?

● Starter topics:
○ PyDA: Is there a need for notebook specialisations for online device data access?
○ PyDA: What are your needs for online data aggregation and synchronisation? (aka. event building,

data table pivoting). Unlike PyJAPC, PyDA does not currently support parameter groups
○ Do Python virtual environments serve the MD community well?
○ Would access to the TN from SWAN be of interest to you? (work in progress: IT leading a project)

19

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

Questions?

Find out more about PyDA:

https://acc-py.web.cern.ch/gitlab/acc-co/de
vops/python/prototypes/pyda/

or

Search for “pyda” at
https://acc-py-repo.cern.ch/

Try PyDA and let us know
how it works for you.

Integrating your feedback
into the PyDA is how it
becomes an even more

useful tool

Join us at the Acc-Py
community meetings:

acc-python-announce eGroup

and

Mattermost

Thank you!

https://acc-py.web.cern.ch/gitlab/acc-co/devops/python/prototypes/pyda/docs/stable/
https://acc-py.web.cern.ch/gitlab/acc-co/devops/python/prototypes/pyda/docs/stable/
https://acc-py-repo.cern.ch/browse/
https://e-groups.cern.ch/e-groups/Egroup.do?egroupId=10326414
https://mattermost.web.cern.ch/acc-py/channels/town-square

home.cern

Phil Elson | PyDA: The future of device access with Python | 03/02/2025

Online vs offline data

22

