

Injector Controller Studies Continual optimisation of injection in the PSB

F. Huhn, C. Bracco, F. M. Velotti

2025/02/05

Common problem

- Minimise some quantity *f*, dependent on:
 - **p**, parameters, i.e. things we can change
 optimiser ⇒ **p**_{oot}
 - **s**, state variables, i.e. things we can't change
 - e.g.: machine drifts, stray fields

 $\min_{\mathbf{p}_t} f_t(\mathbf{p}_t) = f(\mathbf{p}_t; \mathbf{s}(t))$

Classical optimisers only handle s = {} or s₀
 ⇒ Time-varying Bayesian optimisation^[1]

[1] Bogunovic et al, 2016 -- https://arxiv.org/abs/1601.06650

Gaussian process

• Probabilistic model: $f(\mathbf{x})|\mathbf{X}, \mathbf{y} \sim \text{Gaussian}(\mu(\mathbf{x}), \sigma(\mathbf{x}))$

• For any **x**, we have a mean estimate μ , and uncertainty σ .

Bayesian optimisation

Procedure

- 1. Pick next point to observe: **x**
- 2. Get observation: *y*
- 3. Update posterior: μ , σ

Picking next point

- Acquisition function: combine μ (exploitation) and σ (exploration)
 - e.g. $LCB(\mathbf{x}) = \mu(\mathbf{x}) \beta \sigma(\mathbf{x})$
- Minimum of acquisition function = next point

Time-varying Bayesian optimisation

- In addition to the parameters **p**, we add time, *t*, as a variable of the GP.
 - *t* is a proxy for the state **s**.
- Choose next point with *t* fixed to the next time (e.g. cycle timestamp).
- Avoiding large changes in parameters:
 - Proximal biasing
 - Proximal constraining

PSB Transverse Painting

LN4 injects H⁻, which pass through a • stripping foil, resulting in H⁺, H⁰, H⁻.

- Space-charge losses •
 - Minimise by sweeping the injected beam • horizontally (painting) with the KSW.

Match injection location with closed orbit (orthogonal steering vs KSW bump)

27

A1 [mm]

28

x [mm]

0.006

24

Results – drift

Results – jumps

Conclusion & Future

Conclusion

- TVBO successfully optimises objective vs slow and fast time-variations in state
- UCAP device and acc-geoff4ucap agent developed
- TVBO available as another optimiser that can be readily used by others

Future

- TVBO running continually via accgeoff4ucap
- Fully configurable and supervised by OP/experts, e.g. via LSA settings
- Test acc-geoff4ucap on long MD (days, perhaps weeks)

home.cern

Results – multiple parameters

