

Double Harmonic Automatic Phasing

Authors: A. L. Pastinante, S. Albright, M. Marchi

Acknowledgements: A. Beeckman, S. F. Lauber, A. Lasheen, J. A. Wulff, BLonD Developers and PSB Operations

Outline

- Problem Statement
- Method
 - Objective Function
 - Bayesian Optimization
 - Scalar Optimization
 - Segmented Optimization
- PSB Tests
 - Scalar Optimization
 - Segmented Optimization
- Conclusion

Problem Statement

Double Harmonic Operation in the PSB:

Minimize space charge impedance by entering Bunch Lengthening Mode (BLM) This requires correctly phasing the 2nd harmonic $\rightarrow \Phi_2$

Problem Statement

Double Harmonic Operation in the PSB:

Minimize space charge impedance by entering Bunch Lengthening Mode (BLM) This requires correctly phasing the 2nd harmonic $\rightarrow \Phi_2$

Problem Statement

Method

1. Filter and normalize profile

Method

- 1. Filter and normalize profile
- 2. Cut at 95% of intensity and identify mid-point: part 1 (P₁) and part 2 (P₂)

Method

- 1. Filter and normalize profile
- 2. Cut at 95% of intensity and identify mid-point: part 1 (P₁) and part 2 (P₂)
- 3. Compare:
 - C1 = Flip P₁ and compute |P₁^{inv} - P₂| (symmetry measure)

Method

- 1. Filter and normalize profile
- 2. Cut at 95% of intensity and identify mid-point: part 1 (P₁) and part 2 (P₂)

3. Compare:

- C1 = Flip P₁ and compute |P₁^{inv} - P₂| (symmetry measure)
- C2/3 = Compute the deviation of P_{1/2} from its mean (measure of flatness)

Method

- 1. Filter and normalize profile
- 2. Cut at 95% of intensity and identify mid-point: part 1 (P₁) and part 2 (P₂)

3. Compare:

- $C1 = Flip P_1$ and compute $|P_1^{inv} - P_2|$ (symmetry measure)
- C2/3 = Compute the deviation of P_{1/2} from its mean (measure of flatness)
- BLF = Bunch length(95%)/ T_0
- 4. Compute:
 - $f(\Phi_2) = (C1 + C2 + C3)/BLF$

60

-2 -12 0 Phase Offset $\Delta \Phi_2$ [rad]

Objective value as a function of phase offset from optimum ٠

3

-3

CÉRN

Method: Bayesian Optimization (scalar)

Method: Bayesian Optimization (scalar)

Method: Bayesian Optimization (intervals)

PSB Tests: Sequential Optimizer (MD14683) - 1.4 GeV Cycle: Low Intensity (40e10 ppb)

- Sequential optimization was partially successful (beam profile achieved & no loss) with no prior knowledge
- Slightly noisy, at the initial turns but can be fixed with filtering/averaging •
- Time-step: 20 ms
- **Optimization time**: 282 cycles (50 min)

PSB Tests: Interval Optimizer (MD14683) - 1.4 GeV Cycle: Low Intensity (40e10 ppb)

2 phases/segments per interval

PSB Tests: Interval Optimizer (MD14683) - 1.4 GeV Cycle: Low Intensity (40e10 ppb)

CERN

29

PSB Tests: Interval Optimizer (MD14683) – Modified 1.4 GeV Cycle: Low Intensity (40e10 ppb)

CERN

PSB Tests: Interval Optimizer (MD14683) – Modified 1.4 GeV Cycle: Low Intensity (40e10 ppb)

ϕ_{s0} vs Expected Φ_2 for Modified 1.4 GeV Cycle

Conclusions

- Proof-of-principle study for automatic phase setting
- The optimizer approximately computes the correct phasing, but this is not robust to all operational conditions (especially not high B-dots due to bunch profile perturbations, as was seen in simulation).
- Need to complement more complex voltage programs with a manual optimization to be able to compare
- Next steps:
 - Train a Neural Network to compute the objective function with labelled data that can classify and compute best profile under **all** circumstances
 - Find a framework which can compute phases throughout the cycle for faster convergence and better performance

Thank you for listening! Questions?

Future work

- Triple Harmonic Operation:
 - GP to compute the 2nd and 3rd harmonic phase \rightarrow much like current segmented approach
 - Could also be extended to compute amplitudes of all voltages at an optimization interval (if KPI fusion goes well)
- Al approach to attempt to compute amplitudes and phases over the entire cycle (time series forecasting) and possibly interpret the data:
 - Interpretation could be through mapping the input-output space or by using a model which is inherently interpretable (like Temporal KANs)
 - Explore & Trade-Off : Temporal Fusion Transformers / Bi-GRU / VCformer / etc.

Supporting Slides: Space Charge Effect

(+ compensating beam loading: small shift in Φ_2)

Supporting Slides: Objective Function Change in Voltage Ratio $r = \frac{3}{8}$

 Objective function mapped against phases for a non-accelerating bucket

Supporting Slides: Objective Function

Supporting Slides: Bayesian Optimization (scalar)

Modelling the objective function: **Gaussian Process**

- Objective function is modelled by a collection of functions and the probability distribution over those functions.
- The relation between different samples of the objective function and the variable (phase at a point) is captured by a *covariance* kernel which defines the collection of functions
- Objective function approximated at each optimization interval

Supporting Slides: Bayesian Optimization (scalar)

Optimizing the objective function: Bayesian Optimization

- An acquisition function (Expected Improvement) determines the best sampling point by weighting the minimum of the predicted mean (exploitation) and the predicted standard deviation (exploration)
- Then the sample taken of that point updates the Gaussian Process (i.e. the predicted objective function)

Supporting Slides: Bayesian Optimization

Modelling the objective function: Gaussian Process

- Objective function is modelled by a collection of functions and the probability distribution over those functions.
- The relation between different samples of the objective function and the variables (2, 3, etc. phases at points) is captured by a *covariance kernel* which defines the collection of functions
- Objective function approximated at each segmented optimization interval

Supporting Slides: Bayesian Optimization (seamented)

Optimizing the objective function: Bayesian Optimization

- An acquisition function (Expected Improvement) determines the best sampling point by weighting the minimum of the predicted mean (exploitation) and the predicted standard deviation (exploration)
- Then the sample taken of that point updates the Gaussian Process (i.e. the predicted objective function)

Supporting Slides: Covariance Kernel

• Matern Kernel (scalar and multidimensional variants)

$$k_M(x,x') = rac{2^{1-
u}}{\Gamma(
u)} igg(rac{\sqrt{2
u}|x-x'|}{\ell}igg)^
u K_
u igg(rac{\sqrt{2
u}|x-x'|}{\ell}igg)$$

• It is a generalized version of the RBF kernel, with smoothness incorporated

Supporting Slides: Acquisition Function

• Expected improvement: we want to maximize a utility function given by:

$$u(x) = \maxig(0, f' - f(x)ig)$$

 $x = \Phi_2^x$ f' = Minimum objective values **observed** f(x) = Approximated Objective Function mean

• The expected improvement is:

$$\begin{aligned} a_{\text{EI}}(x) &= \mathbb{E}\big[u(x) \mid x, \mathcal{D}\big] = \int_{-\infty}^{f'} (f' - f) \,\mathcal{N}\big(f; \mu(x), K(x, x)\big) \,\mathrm{d}f \\ &= \underbrace{\left(f' - \mu(x)\right)} \Phi\big(f'; \mu(x), K(x, x)\big) + \underbrace{K(x, x)\mathcal{N}\big(f'; \mu(x), K(x, x)\big)}_{\text{Exploration term}} \end{aligned}$$

