

PSB horizontal instabilities: beam observables and model predictions

Chiara Antuono, Foteini Asvesta, Carlo Zannini

Acknowledgements : S. Albright, M. Barnes, G.P. Di Giovanni, L.M. Feliciano, E.K. Platia, G. Rumolo, and the PSB operation team

IPP-MD days 2025

02/05/2025

- Introduction
- Observation after LIU
 - A new horizontal instability
- Horizontal instability studies
 - Test with kicker terminations
 - Expectations from the model
 - Additional verification of the model
- Conclusions and outlook

Introduction

- Observation after LIU
 - A new horizontal instability
- 2023-24 horizontal instability studies
 - Expectations from the model
 - Test with kicker terminations
 - Additional verification of the model
- Conclusions and outlook

Horizontal instabilities at the PSB

- A horizontal head-tail instability has been observed for more than 40 years in the PSB at about ~160 MeV, 330 MeV, 1.3 GeV [1]
- Although the instability was fully controlled in everyday operation by the TFB, its source and mechanism remained unknown
- Simulations and theoretical analysis predicted as a source the unmatched impedance cables of the extraction kicker [1]
 - In 2018 before LS2, **experimental test** confirmed the involvement of the extraction kicker cable

Before LIU

- All three experimentally observed instabilities were predicted and explained either by the first or the second kicker resonance
 - Good agreement between model and beam-observables

[1] E.K. Platia et al., Source of horizontal instability at the CERN Proton Synchrotron Booster, 2019, PRAB

- Introduction
- Observation after LIU
 - A new horizontal instability
- Horizontal instability studies
 - Expectations from the model
 - Test with kicker terminations
 - Additional verification of the model
- Conclusions and outlook

A new horizontal instability after LIU

Unknown horizontal instability observed in 2021 for the first time with high energy beam and with TFB on, for intensities above 500 · 10¹⁰ ppb [2]

Mitigation strategy identified using linear coupling and QSKHO quadrupoles [2]

• Accelerated more than 1000e10 protons!

Many studies carried out since 2021 (more in backup):

- Intensity thresholds (N_{th}) depends on chromaticity [3] and longitudinal emittance [4]
- Instability behaviour changes with horizontal tune and energy

 ^[2] F. Asvesta et al., High intensity studies in the CERN proton synchrotron booster, IPAC'22
[3] C. Zannini, *PSB reference measurements, CEI section meeting* [4] C. Antuono et al, Status of the PSB impedance model and instability studies, IPP MD days 2023

Following some beam observables the suspect on the extraction kicker terminations arose again

- Introduction
- Observation after LIU
 - A new horizontal instability
- Horizontal instability studies
 - Expectations from the model
 - Test with kicker terminations
 - Additional verification of the model

Conclusions and outlook

[5] C. Zannini et al., LOW IMPEDANCE DESIGN WITH EXAMPLE OF KICKERS (INCLUDING CABLES) AND POTENTIAL OF METAMATERIALS, Zermatt 2019 MCBI proceeding

[5] C. Zannini et al., LOW IMPEDANCE DESIGN WITH EXAMPLE OF KICKERS (INCLUDING CABLES) AND POTENTIAL OF METAMATERIALS, Zermatt 2019 MCBI proceeding

CERN

- Introduction
- Observation after LIU
 - A new horizontal instability

Horizontal instability studies

- Expectations from the model
- Test with kicker terminations
- Additional verification of the model
- Conclusions and outlook

Experimental verification

A dedicated test at the end of the 2023 Run with two kicker terminations was performed

Last test on 31/10/23

[5] C. Zannini et al., LOW IMPEDANCE DESIGN WITH EXAMPLE OF KICKERS (INCLUDING CABLES) AND POTENTIAL OF METAMATERIALS, Zermatt 2019 MCBI proceeding

Cure of the instability

- Studies with the latest impedance model and
 - Sacherer stability criteria : $\frac{f_i}{f_{rev}} + Q_x = n$

Instability occur \rightarrow sharp change from black to white

Second kicker resonance

Increase of Q_x: instability pushed beyond 2 GeV

Operational solution

• Change of working point (Q_x)

Successfully tested in 2024 operation <u>Instability not observed</u> without TFB and linear coupling

- Lower emittance and almost perfect transmission
- Improved beam quality and overall performance

	2023	2024
Intensity [ppb]	$825\cdot 10^{10}$	$837\cdot 10^{10}$
Transmission	0.983	0.996
Horizontal emittance [mm mrad]	7.806	7.04
Vertical emittance [mm mrad]	9.02	6.057

- Introduction
- Observation after LIU
 - A new horizontal instability
- Horizontal instability studies
 - Expectations from the model
 - Test with kicker terminations
 - Additional verification of the model

Conclusions and outlook

Additional verification of the PSB model

A specific MD cycle was implemented to measure the instability at 470 MeV

The 470 MeV was detected, further validating the PSB impedance model

instabilities is challenging

- Introduction
- Observation after LIU
 - A new horizontal instability
- Horizontal instability studies
 - Expectations from the model
 - Test with kicker terminations
 - Additional verification of the model
- Conclusions and outlook

Conclusions and outlook

- Horizontal instability observed at the PSB for the first time after LIU with:
 - high energy beam (~1.6 GeV)
 - TFB on
 - for intensities above 500e10 ppb
- Predictions with the latest impedance model suggested the involvement of the unmatched impedance termination of the extraction kicker
 - Experimentally confirmed in 2023 in a dedicated MD
 - Proposed a mitigation strategy successfully tested during the PSB operation
- The latest impedance model can explain all the observed instabilities
 - Additional instabilities are also predicted
 - MDs in 2024 confirmed the presence of the instability at about 470 MeV
 - Further investigation of predicted instabilities could be nice but not straightforward

Thank you!

Backup

Impedance model of the extraction kicker

[3] C. Zannini et al., LOW IMPEDANCE DESIGN WITH EXAMPLE OF KICKERS (INCLUDING CABLES) AND POTENTIAL OF METAMATERIALS, Zermatt 2019 MCBI proceeding

IPP-MD days 2025

CÉRN

Expectations from the model: could we cure the instability?

• Two possible solutions to suppress the 1.6 GeV instability: further and dedicated studies are needed

2. Long-term hardware solution

Insertion of a saturating inductor

Case study investigated for the suppression of the 160 MeV instability

saturating inductor in the kicker circuit (between the kicker and the transmission lines) as proposed by M. Barnes

Possible future limitations

PSB horizontal kicker instability

-Not limited 2024 Run

-However, with the aim of **increasing intensity** (and the energy , e.g. ISOLDE) both the instabilities at **1.6 GeV and 1.3 GeV** might be a limitation

- Activity already observed during measurements for the 1.3 GeV instability increasing the intensity up to **1.28e13 p/b with the TFB on**.
- The **change of tune for the 1.3 GeV** to mitigate the instability (as for 1.6 GeV) cannot be done easily since the **curve of energy with tune is quite flat**
 - tune has to change a lot to push the instability!

Kicker circuit

CERN

A new horizontal instability

BK SET T

- Horizontal instability observed in 2021 for the first time with high energy beam with TFB on, for intensities above 500e10 ppb ٠
 - Many studies carried out since 2021 *:
 - Instability behaviour remained unchanged over the years
 - Intensity threshold depends on chromaticity

Intensity threshold with TFB off

- Instability threshold measured as function of chromaticity
 - Higher chromaticity than natural bring to a slight increase of the threshold (from 250e10 ppb to 300-350e10 ppb in ring 2)
 - Smaller chromaticity to a significant reduction of the threshold (from 250 ppb to 150 ppb in ring 2)

- Mitigation strategy identified: currently cured using linear coupling and QSKHO quadrupoles
 - Accelerated more than 1000e10 protons!

Observation in 2022 : Nth dependence with emittance

- Unchanged behaviour with time of the instability:
 - Similar intensity threshold
 - Same behaviour with chromaticity

•

Observation in 2022 : test changing tune and intensity

• We **changed the tune** to see how the Nth changes

Ring TFB off	1.7 GeV cycle	
R1	~175e10 ~ C695 ms	
R2	~160e10 ~ C690 ms	
R3	~400e10 ~ C670 ms	
R4	~210e10 ~ C675 ms	

- We turned off the TFB from C600 ms
- We increased the intensity step by step
 - Instability around C685 ms

Observation in 2022 : test changing tune and intensity

We **changed the tune** to see how the Nth changes

R1

R2

R3

R4

- The instability behaviour is complex
- The intensity thresholds could change with the energy and the tune as well
- Again, the suspect of an involvement of the kicker termination arose

•

2500

- With the latest impedance model of the PSB :
 - We can plot the Sacherer stability criteria as a function of the tune
 - An instability could occur when there is a sharp change in the colour from black to white
 - Focus on the operation tune $Q_x \sim 0.17$
 - **1.2 GeV** predicted by the third kicker resonance
 - Similar to beam observations (see slide 10) at about 1.3 GeV
 - The instability introduced by the third resonances should be weaker and indeed the 1.3 GeV instability appears at higher intensities

Additional instabilities expected from the third

 $(f_i/f_{rev}+Q_x) \mod 1$

kicker resonance

Prediction with old impedance model

(CERN)