



# Quality related experience in CO<sub>2</sub> cooling systems.

Workshop on Quality Issues in Current and Future

Silicon Detectors

Friday 4 November 2011

Bart Verlaat (Nikhef/CERN)









- Quality is of course:
  - The right procedures to make reliable hardware which does not break and needs a minimum of maintenance.
- But, quality is as well:
  - A design approach which does not need complicated hardware, nor a complicated control.
- And in cooling systems quality means as well:
  - The vapor/liquid mass fraction, but that is not the scope of this QA presentation.



## CO<sub>2</sub> cooling projects in particle physics



- 2 CO<sub>2</sub> cooling systems have successfully been built for particle detectors
  - AMS-Tracker experiment on the International Space Station
  - LHCb-Velo experiment for the Large Hadron Collider at CERN
- Many future CO<sub>2</sub> cooling systems are under design:
  - Atlas Inner B-layer @ CERN
  - CMS upgrade pixel @ CERN
  - Belle-2 @ KEKb (Japan)
- Some are foreseen for the far future:
  - CMS upgrade tracker @ CERN
  - Atlas upgrade pixel and tracker @ CERN
  - LC-TPC for the future Linear Collider



#### The 1<sup>st</sup> CO<sub>2</sub> cooling system in Space!

CERN

A CO<sub>2</sub> cooling system for Alpha Magnetic Spectrometer (AMS) Tracker Detector on the International Space station (ISS)

ISS sightings:

|  | Date  | Mag  | Starts   |      |     | Max. altitude |      |     | Ends     |      |     |
|--|-------|------|----------|------|-----|---------------|------|-----|----------|------|-----|
|  |       |      | Time     | Alt. | Az. | Time          | Alt. | Az. | Time     | Alt. | Az. |
|  | 4 Nov | -1.5 | 18:31:43 | 10   | W   | 18:34:32      | 29   | SW  | 18:37:21 | 10   | SSE |
|  | 5 Nov | -2.6 | 17:34:12 | 10   | WNW | 17:37:19      | 55   | SSW | 17:40:27 | 10   | SE  |
|  | 6 Nov | -0.4 | 18:13:36 | 10   | W   | 18:15:45      | 17   | SW  | 18:17:54 | 10   | S   |











### AMS-Tracker Thermal Control System





























### LHCb-Velo Thermal Control System (LHCb-VTCS)





Cooling capacity: 1.5 kW@-30°C



## VTCS Evaporator (Inside LHC vacuum system)















# Quality approach in CO<sub>2</sub> cooling systems



- The applied quality rules in the current CO<sub>2</sub> systems in HEP come from the AMS experiment and are therefore directly related to NASA space standards.
- Although lots of people think that "space" means exotic technologies; the opposite is true:
  - Space hardware must be as simple as possible!
  - Nicely explained in the payload construction manual:
    - Simplified Design Options for STS Payloads



## Just some nice recommendations from this NASA manual:



C-2054 evison -

#### Simplified Design Options for STS Payloads

Loads and Structural Dynamics Branch Report

Structures and Mechanics Division Engineering Directorate

April 1988

David A. Hamilton



Lyndon B. Johnson Space Center



#### Keep things simple:

#### Appendix B - Design Considerations

- B1. The following comments relative to structural design were provided by P. D. Smith of the Structural Mechanics Branch.
  - Make the structure simple. Many aircraft/spacecraft designers get carried away by thinking exotic missions require exotic hardware, when in reality exotic missions succeed when simple structure is provided. Visualizing a "how would I design this at home" approach is sometimes helpful. Structural design is basically "connect the head bone to the neck bone, etc." Do not over do it.

#### Use your common sense:

#### Computer Programs

Computer programs are not a substitute for good basic judgment. Final reactions should be checked for summations at all forces; for this principle still holds even in the high technology age. Plot results and



# From space standards to earth applications



- The LHCb CO<sub>2</sub> cooling is based on the lessons learned in AMS.
- The LHCb quality requirements were high:
  - Evaporator hardware is inside the LHC vacuum
    - Extreme leak tightness requirements,
    - Inaccessible
    - Both are similar to the requirements of AMS in space.
  - As we were used in designing and building according to the AMS rules, the philosophy was applied to the entire LHCb-Velo cooling system.
- This quality philosophy seems to work well
  - The LHCb-VTCS has run since 2008 almost continuously without major problems.



#### Quality starts with a simple concept.







The 2-Phase Accumulator Controlled Loop (2PACL)

- For AMS the 2PACL method was invented
  - Simple to operate, self stabilizing cooling system.
  - Minimum amount of actuators and control.
- 2PACL successfully applied in LHCb-Velo.
  - Passive in detector cavern
  - All active components in the distant accessible cooling plant
  - 1 primary control (P7 accumulator pressure = detector temperature)



### AMS TTCS and LHCb-VTCS 2PACL performance









- Accumulator control is main controlled item.
  - A combined cooling / heating control
    - AMS: Electrical heating and radiation cooling
    - LHCb: Electrical heater / freon injection
- Other controls are not critical for a stable temperature in the detectors.
  - AMS:
    - Some small heaters
  - LHCb:
    - · Chiller: capacity control with injection valves and compressor frequency inverter
    - Heaters: Vibration damper heater and pump oil heater
- All controls and actuators are simple industrial standards in LHCb, accumulator is only homemade object





## LHCb-VELO long term performance





- LHCb-VTCS runs without major problems since 2008.
  - 2008 commissioning phase
  - From 2009 continuous switched on (see plot), -30°C since Oct 2009.
- Problems experienced
  - Insulation leakage (replaced part of the insulation in shut-down Jan 2011)
  - 1 clogging filter in the TR system causing a slow increase of the temperature (red line)
    - Replaced in shut-down Jan 2010, due to replace next week again
  - 1 leak was observed in the chiller and repaired (industry production fault)



# Applied quality and safety rules in future CO<sub>2</sub> systems.



- For pressure safety we are obliged by law to follow the PED (Pressure Equipment Directive)
- For dangerous aspects in cooling systems we have developed strict rules:
  - Heater safety: 2 fault redundant
    - 1 hardware interlock
    - 2 software interlock levels
      - Warning: Switch off individual heater
      - Alarm: Switch off all heaters (to protect against sensor swap)
  - Trapped liquid safety
    - Automatic valves actuated by pressure measurement
    - Relieve valve or burst disc
- For QA related aspects of the CO<sub>2</sub> system we follow basic rules as gained from previous experience
  - Orbital welding
  - Swagelok VCR connectors
  - Keep it simple approach
  - Design for insulation
- For control we are following for future systems the PVSS-UNICOS approach from the LHC cryogenics.



### PED Classification (1)



#### (Pressure Equipment Directive)

- PED classification for CO<sub>2</sub> systems.
- Stored energy = MDP x Volume
  - MDP = Relieve pressure
  - MDP= (P @ TenvMax or P+dPpump)x110%
  - PTP = 1.43 x MDP

MDP = Maximum design pressure, PTP = Proof Test Pressure



### Find minimum for stored energy (Not necessarily at lowest pressure)

Stored energy of accumulator in case of fluid storage (worst case).









| Category | Design                      | Fabrication                    | Commis-<br>sioning    | PED Module    | Applicable to volumes @ MDP=90bar          |  |
|----------|-----------------------------|--------------------------------|-----------------------|---------------|--------------------------------------------|--|
| Art. 3.3 |                             |                                |                       | Good practice | V≤0.55 Liter<br>Dn≤ø32 mm                  |  |
| 1        |                             |                                |                       | Α             | 0.55 <v≤2.2 l<br="">DN≤ø100mm</v≤2.2>      |  |
| II       |                             |                                | Notified Body control | A+A1          | 2.2 <v≤11.1 l<br="">DN≤ø250mm</v≤11.1>     |  |
| III      | Notified Body Apcontrol fab |                                | Notified Body control | B1+F          | 11.1 <v≤33.3l<br>DN&gt;ø250mm</v≤33.3l<br> |  |
| IV       | Notified Body control       | Approved fabrication procedure | Notified Body control | G             | V>33.3L                                    |  |

The higher the PED class, the larger notified body involvement



# Applied quality and safety rules in future CO<sub>2</sub> systems.



 For pressure safety we are obliged by law to follow the PED (Pressure Equipment Directive)



For dangerous aspects in cooling systems we have developed strict rules:

- Heater safety: 2 fault redundant
  - 1 hardware interlock
  - 2 software interlock levels
    - Warning: Switch off individual heater
    - Alarm: Switch off all heaters (to protect against sensor swap)
- Trapped liquid safety:
  - Automatic valves actuated by pressure measurement
  - Relieve valve or burst disc
- For QA related aspects of the CO<sub>2</sub> system we follow basic rules as gained from previous experience
  - Orbital welding
  - Swagelok VCR connectors
  - Keep it simple approach
  - Design for insulation
- For control we are following for future systems the PVSS-UNICOS approach from the LHC cryogenics.





### Trapped liquid

- Trapped cold liquid is a real danger in a cooling system.
- Be careful with introducing too many valves
- Don't use valves with dead volumes
- Every volume needs a relieve
- AMS-TTCS has no valves, only liquid trap possible in frozen condenser
  - MDP=3000 bar for condenser!
- LHCb-VTCS has burst discs at each volume + controlled valves to avoid liquid trap
  - MDP=135 bar (Swagelok burst disc)





Ball valve with T-hole



# Applied quality and safety rules in future CO<sub>2</sub> systems.



- For pressure safety we are obliged by law to follow the PED (Pressure Equipment Directive)
- For dangerous aspects in cooling systems we have developed strict rules:
  - Heater safety: 2 fault redundant
    - 1 hardware interlock
    - 2 software interlock levels
      - Warning: Switch off individual heater
      - Alarm: Switch off all heaters (to protect against sensor swap)
  - Trapped liquid safety:
    - Automatic valves actuated by pressure measurement
    - Relieve valve or burst disc



#### For QA related aspects of the CO<sub>2</sub> system we follow basic rules as gained from previous experience

- Orbital welding
- Swagelok VCR connectors
- Keep it simple approach
- Design for insulation
- For control we are following for future systems the PVSS-UNICOS approach from the LHC cryogenics.



## Quality aspects of pipe connections

- Only serious joining techniques were used:
  - Vacuum brazing
    - (No flux=No corrosion)
  - Orbital welding.
    - Automatic procedure also in small spaces
  - Reliable connectors:
    - Space qualified Dynatube for AMS
    - Swagelok VCR connectors for "earth" use
  - Not all connectors are meant for disassembly!
    - Swagelok tube fittings deform the pipe and can easily damage the connection forever.
    - The use of these connectors is okay for 1 time assembly only
- No leakage problems have been observed in the LHCb CO<sub>2</sub> system
  - Last refill (2x12 kg) in January 2010, system was empty for maintenance reasons





Dynatube diaphragm connector



Swagelok VCR connector with replaceable seal (Multiple use)





#### Insulation

- Good insulation is very important.
  - Moisture seal function more important than heat leak.
- Design the cooling plant for easy insulation.
  - Complicated geometries are hard to insulate vapor tight.
  - LHCb plant was designed too tight
  - Future systems are designed for easy insulation
- LHCb suffered a lot from bad insulation
  - Bad experience with Armaflex NH
    - CERN standard as it is non flammable
    - Ageing problem material seem to dry out
    - Closed cell becomes open cell = > water absorbing sponge
  - Part of the insulation replaced with Armaflex AF (special CERN permission)
  - Still forming ice in places inside the cooling plant which could not be repaired.
    - Not problematic, but not elegant.
- Investigation of vacuum insulation inside detectors for future systems
  - IBL transfer line







### Redundancy approach



#### LHCb-VTCS



Adding redundancy is not always adding reliability.

#### LHCb pump redundancy was shared between 2 systems.

- Added complexity of valves was under estimated.
- Each valve increases the complexity more then linear.
- Full proof PLC program was a complex task

#### Better approach:

- A simple system without local redundancy.
  - No extra valves!
- Have a spare simple system ready (AMS approach)
- Switch over to system B incase of problems
  - Also easy for maintenance
- Less risk of trapped liquid
- Atlas upgrade idea:
  - 6 identical systems of 20kW +x spare unit(s)
  - Instead of a single 120kW plant with internal redundancy

#### LHCb-VTCS backup procedures all in PLC

No user interaction required.



# Applied quality and safety rules in future CO<sub>2</sub> systems.



- For pressure safety we are obliged by law to follow the PED (Pressure Equipment Directive)
- For dangerous aspects in cooling systems we have developed strict rules:
  - Heater safety: 2 fault redundant
    - 1 hardware interlock
    - 2 software interlock levels
      - Warning: Switch off individual heater
      - Alarm: Switch off all heaters (to protect against sensor swap)
  - Trapped liquid safety:
    - Automatic valves actuated by pressure measurement
    - Relieve valve or burst disc
- For QA related aspects of the CO<sub>2</sub> system we follow basic rules as gained from previous experience
  - Orbital welding
  - Swagelok VCR connectors
  - Keep it simple approach
  - Design for insulation



For future system control we are following the PVSS-UNICOS approach adopted from the LHC cryogenics.



### Control logic approach (1)





#### Standardization approach



Industrial electrical components Control hardware equipment Electrical diagnostic tools Siemens PLC standard

**TE-CRG-CE** 



Schneider PLC standard



EN-CV-DC EN-ICE

PH-DT-PO

CO2

UNICOS framework IEC61512-1 standard PVSS



New software components:

- on-line pressure enthalpy diagram
- one button PVSS system start/stop Alarm diagnostic



**Detector Seminary** 

11th October 2011

L.Zwalinski – PH/DT/PO

Recipes component



#### Control logic approach (2)









#### Conclusions

- Quality means:
  - A simple conceptual design.
  - The use of reliable industrial components
  - Common sense
  - A simple redundancy approach
- Aerospace QA philosophy inherited from AMS seem to be a good way to go for CO<sub>2</sub> cooling systems
  - No major problems in LHCb
    - Okay, except for the insulation, but a space standard for foam didn't exist.....(bad excuse!)

