

Integration and System Qualification of the ATLAS Pixel Detector

Markus Keil

2nd Institute Of Physics, Georg-August-Universität Göttingen and CERN

On behalf of the ATLAS Collaboration

- Will cover the period from integration to operation
 - Mainly QC
- Will try to focus on lessons we have learned
 - Do not claim to have brand-new insights, but rather summarise the well-known pitfalls we encountered
 - Recommendations will be based on the assumption of infinite time; it is clear that in some cases the perfect QA might have to be sacrificed to the schedule
 - (I will also mention a few things that were successful ;-))

- Pixel Detector Integration
- Pixel Package Integration
- Pixel Detector Installation
- Pixel Detector Operation
- Conclusions

- Pixel Detector Integration
- Pixel Package Integration
- Pixel Detector Installation
- Pixel Detector Operation
- Conclusions

Pixel Barrel Integration

- Staves were mounted to bistaves (cooling unit)
- Bi-staves were mounted into half-shells
- Half-shells were clamped together
- During bi-stave construction:
 Test of several modules at a time with dedicated test setup

Problems During Integration

- Problems with connectors of micro-cables:
 - Soldering of the connector broke mainly on the outer pins
 - Had sporadically shown up before, but no systematic stress-tests done, only repair of defect connectors
 → continued to show-up

- Type-0 cable problems (barrel):
 - Discovered during integration
 - Went back to vendor for change of production sequence
 - Scrupulous test program for new cables
- HV return:
 - Tests were blind to a defect in the HV return due to parasitic current paths
 - Problems were found and had to be repaired during installation

- Connectors at both ends (mounted on PCB board)
- Round Al conductors
 - 30 individual wires per cable
 - 16 x 100µm diameter
 - 14 x 300 µm diameter
 - Custom thickness polyurethane insulation

Close-up of a typical cable Close to heat shrink tube:

Example of damaged cables: the insulation is broken, leaving the cable very vulnerable to failure with even very delicate handling or with thermal cycling

The Bad Process Step

- Wires were bent before stripping, separating thin and thick wires (to be stripped in two different phases)
- Stripping solution is molten NaOH (T ~ 400C)
- Pictures of insulation heated above 250C:

Bent then heated:

Heated then bent:

- Reproduced enough cables for layer-0, layer-1 and part of layer-2
- For rest of layer-2 accepted part of initial production after stricter quality control
 - Mechanical stress testing
 - Electrical test and visual inspection before and after stress testing
- After that only very few failures of type-0 cables and not clearly related to the old failure mode

- Pixel Detector Integration
- Pixel Package Integration
- Pixel Detector Installation
- Pixel Detector Operation
- Conclusions

The ATLAS Pixel Package

- Service Panels bring services out of inner detector volume (cryostat)
- 7-m-long pixel package integrated on the surface
- Detector plus 8 service quarter panels

- In fall 2006 before final detector integration: performed a 10% system test
 - One end-cap (144 modules)
 - One prototype service panel
 - Services and readout close to final version
 - operation at -10 °C, using evaporative cooling;
- Achievements:
 - Commission services
 - Commission DAQ and offline with cosmic and random triggers.
 - Caught several important problems (next slides)

Opto-board Slow Turn-On

Decoded data-stream:

Scope picture:

- Problem I: Discovered opto-board channels with slow turn-on
 - Would have led to data corruption during operation
 - Added additional QA step for the opto-boards in the final service quarter panels
 - Several opto-boards with slow turn-on found and exchanged

Opto-board Temperature Dependence

- Problem II: VCSEL array power and uniformity are temperature dependent
 - One VCSEL array serves 6/7 modules; no single-channel adjustment possible
 - Opto-boards coupled to cooling → added resistive heaters to actively control temperature; now opto-boards are operated at 20degC, all links are tunable
 - Without heaters this problem would have had the potential to make several links in the detector untunable (1 link = 1 module)

LEMO-F Connectors

- While setting up system test: Found problem with LEMO-F connectors at PP1 (end of cryostat, point of final connection in the pit)
 - Not exactly the usual cm/inch problem but nearly
 - All components had passed QC but ...

- Female Lemo-F connectors in the pixel package (made in collaboration with LEMO-US) were backfilled and thence had fixed pin-receptacles
- In case of misalignment the receptacle would push the pin back
- Developed special tool with LEMO to check for vulnerable pins
- Find, repair and reinforce those pins
- Check each single pin during service tests
- Introduce procedure in power-up that checks for open sense lines

Package Integration (Mar – Jun 2007)

- During integration: connectivity test
 - No module cooling available
 - Develop test procedure that allows to test all connections in the integrated package without overheating the modules
 - Electrical Services (low voltage, high voltage, NTCs)
 - Optical Links (TTC links, data links)
 - Module Functionality and Identity (from threshold dispersion in short threshold scan)
 - Test was performed after connection of each SQP
 - One dead PiN diode channel and one dead VCSEL channel were not followed up; now there are a few more ⁽³⁾
 - Test was repeated in the pit after the final connection at PP1

- Pixel Detector Integration
- Pixel Package Integration
- Pixel Detector Installation
- Pixel Detector Operation
- Conclusions

ATLAS Pixel Services

- Different possibilities to address reliability question
 - In ATLAS: high granularity of services and control
 - 25000 electrical contacts in more than 400 64-pin connectors at PP1
 - 88 independent cooling circuits
 - 588 optical fibre ribbons
 - Large effort spent on testing the services before doing the final connections and verifying the correct connection afterwards
 - → Service tests
 - → Connectivity test

Service tests:

- Automated test setup using a switching matrix and a programmable load
- Connects to services at PP1 (point of final connection)
- Mimics a group of pixel detector modules and tests
 - Correct connection of all electrical services
 - Correct functioning of hardware interlocks
 - Robustness against sense line breaking (i.e. no dangerous voltages)
 - Correct mapping in the FSM
- Fibre integrity checked with OTDR measurements
- Leak tests done on all cooling pipes
- Guaranteed that services were perfect when connecting the detector
 - Had to exchange parts that had been tested OK before transport and installation

- Connectivity test after installation found
 - Aforementioned problem with HV return; could be bypassed
 - 11 unrecoverable modules
- HV Opens are responsible for majority of unrecoverable modules after installation
- At this point not possible to distinguish between cable and wire-bond problem
- Wire-bonds had low intrinsic reliability so that even after QA some weak parts got through
- Might argue that QC was not strict enough

- Pixel Detector Integration
- Pixel Package Integration
- Pixel Detector Installation
- Pixel Detector Operation
- Conclusions

- During operation in 2008 and early 2009 single laser channels transmitting clock and commands to the detector failed
- Evidence pointed to ESD damage and a new batch with stronger precautions was ordered and installed
- Lasers started to fail again in 2010; most likely cause humidity in the counting room air
- Standard 85/85 test (85C, 85% RH) would probably have revealed the problem
- Luckily no serious problem for operation as laser-plugins can be promptly replaced

- Pixel Detector Integration
- Pixel Package Integration
- Pixel Detector Installation
- Pixel Detector Operation
- Conclusions

- Quality control during integration and installation revealed several problems which otherwise might have cost us dear
- As a result currently ~97% of the ATLAS Pixel Detector are working and behaving as expected
- Will try to summarise a few lessons we have learned
 - Part of them created some nuisance in getting to the 97%
 - Part of them might be responsible for (at least a fraction of) the 3%

- (Not necessarily new) Lessons we learned:
 - Very often it is the less "sexy" things that fail most
 - In systems built at the extreme limits of material budget etc. there hardly is any component too simple to fail
 - In a large scale system operated over many years, there are hardly any one-time failures; even problems that seem "singular" during production and testing might be worth being followed up
 - Test each piece as long as possible under as realistic conditions as possible; a system test is an invaluable instrument to spot problems that occur only when the different pieces have to work together
 - In areas where expertise within the HEP community is limited: be conservative in design, adopt standard test procedures

Backup

The ATLAS Pixel Detector

- 3 hit-system for $|\eta| < 2.5$
 - 3 barrel layers
 - 2 x 3 endcap discs
- 1744 modules,
 80M readout channels
- Innermost barrel layer at 5 cm
 - Radiation tolerance
 500 kGy / 10¹⁵ 1MeV n_{eq} cm⁻²
- Evaporative C3F8 cooling integrated in local support structures
 → Module temperatures < 0°C
 (Average temperature -13°C, warmest module at -5 °C)

The ATLAS Pixel Detector Module

Sensor:

- 250 µm thick n-on-n sensor
- 47232 (328 x 144) pixels
- Typical pixel size 50 x 400 µm²
 (50 x 600 µm² pixels in gaps between FE chips)
- Bias voltage 150 600 V

Readout:

- 16 FE chips, 2880 pixels each
- Zero suppression in the FE chip, MCC builds module event
- Pulse height measured by means of Time over Threshold
- Data transfer 40 160 MHz depending on layer

ATLAS Pixel Optical Links

- Data to and from the detector is transmitted over optical links
- Electro-optical conversion is done
 - On-detector in the optoboards, ~ 1m from the IP
 - Off-detector in the readout crates (back-of-crate cards)
- Optical link tuning:
 - Mainly adjustment of the parameters of the Rx(data)-link