

Integration and System Qualification of the ALICE Silicon Pixel Detector

R. Santoro

On behalf of the SPD collaboration in the ALICE experiment at LHC

Outlook

- Silicon Pixel Detector in the ALICE experiment
- Mechanical accuracy
- Pre-commissioning
- Installation
- Optical link synchronization
- Monitor and debug tools

SPD in the ALICE experiment

Mechanical accuracy

Basic module assembly: Half-stave

Components

- Grounding foil: aluminum-polyimide foil (25 + 50 µm thick) with 11 windows to improve the thermal coupling between the backside of the FE chips and the cooling tube
- ▶ 2 hybrid pixel modules: ladders
 - A p+n silicon sensor matrix 200 μm thick with 40960 pixels arranged in 256 rows and 160 columns
 - > 5 FE chips Flip-chip bonded to the sensor through Sn-Pb bumps
 - The pixel cell has the dimensions of 50 μ m (r ϕ) x 425 μ m (z)
- MCM: Multi Chip Module to configure and read-out the half-stave
- ▶ Pixel Bus: aluminum-polyimide multi-layer bus to connect the MCM and FE chip
 - More than 1,000 wire bonding for each half-stave

Basic module assembly: Half-stave

Sector

- ▶ 2 half-staves are coupled to form a stave
 - The sensitive area is in the center, while the services at the 2 edges
- The staves are mounted onto the low-mass carbon fiber support (sector) in the upper and bottom part to form the 2 layer-structure

Half - barrels

- > 5 sectors are joint one close to the other to form the half-barrel
- The 2 half-barrels are mounted face-to-face around the beam-pipe

Mechanical accuracy

- The ladders positioning in the half-stave has the accuracy of the order of few microns
- The stave positioning onto the sector has the accuracy of the order of tenths of microns
- The sectors were joint one close to the other in the half-barrel with the accuracy of the order of hundred microns
- ▶ The SPD positioning around the beam pipe is of the order of few hundred of microns
- No survey was done at the end

Is this enough for the physics?

- Alignment:
 - The survey measurement is an important input for the alignment algorithm
 - Although, using the estimated mechanical accuracy as input, we aligned the detector within the expectation
- Simulation:
 - The description and the alignment of the passive components has to be very accurate. The transport code is unpredictable if you superimpose two materials in the same region
 - We experienced this problem which still has to be solved
 - Temporary solution adopted in ALICE: simulate collision with a perfectly aligned geometry and reconstruct the events with the residual misalignment geometry

System pre-commissioning

Pre-commissioning (I)

Test performed using the final readout chain, power supplies, DCS system, cooling system, cables, interlock ...

Pre-commissioning (II)

This is the first opportunity to commissioning the full system

- It is a crucial task:
 - You have to run the system by remote as in the experiment
 - You have to be sure that all the safety procedures (i.e. interlock) behave properly
 - The system has to be characterized and the informations stored in the construction DB
 - Everybody in the collaboration wants prompt feedback!!!

Off-detector electronic and trigger Half Barrel Power supplies

... but it is still better than the experiment because you have access to the hardware

- ... and this is extremely useful to:
 - Debug the software and the integration
 - Tune the monitoring and archival tools (voltages, current and temperature measurements)
 - Fix the number convention (i.e. software-hardware module correspondence)
 - ... and in case of small accident ... there is still something that can be done!!!

... one example

- We measured a poor thermal contact which caused higher temperature in one half-stave ...
- We decided to operate surgically the stave instead of rework the full sector

Mechanical integration

Integration in the Department Silicon Facility

The travel inside the heart of ALICE

Installation: ...for the press (I)

Installation: ...for the press (II)

TPC

SDD+SSD moved over the SPD to form the ITS

TPC moved over the ITS

Installation: ...what really happened

SDD + SSD services

R. Santoro

Workshop on Quality Issues in Silicon Det

ITS + TPC: section view

Once the TPC is moved in the final position, there is no more access to the ITS and to the Forward detectors. In addition, two of the 4 patch panels (PP2 and PP3) used for services connections are not accessible anymore

Any access to the detectors or to the services needs a very long and risky procedure:

The time estimate to access the ITS has been recently estimated to be of the order of 7 months

- 1) SPD
- 2) SDD
- 3) SSD
- 4) FMD-2
- 5) T0
- 6) FMD-3
- 7) V0
- 8) SPD services cones
- 9) SDD + SSD services cones
- 10) Front Absorber

What we experienced?

Mechanical integration

- In such a complex and extremely packed detector the good communication between teams or, even better, to have a unique team for the integration could help during the installation
- Integration tests are also preferable although are not always easy
- Services: better accessibility has to be a must
 - See SPD cooling experience (Rosario Turrisi)
 - Cabling failure (1/120 HS in the SPD)

Optical link synchronization

L0 trigger capability

- Pixel chip prompt Fast-OR
 - Active if at least one pixel hit in the chip matrix
 - ▶ 10 signals in each half-stave (1200 signals in total)
 - Transmitted every 100 ns
- Overall latency constrain 800 ns (CTP)
- Key timing processes are data deserialization and Fast-OR extraction
 - ▶ Algorithm processing time < 25 ns
- ▶ 10 Algorithms provided in parallel: useful for detectors commissioning, p-p and Pb-Pb physic
 - Cosmic, minimum bias and multiplicity algorithms
- FPGA remote programmable to guarantee maximum flexibility

Electronic layout

Detector clock phases alignment

Clk outputs

Relative phases of 120 clocks of CR electronics: $\sigma = 0.63$ ns Propagation delays due to 120 fibers measured: $\sigma = 0.9$ ns

Clock phases at SPD inputs without correction: $\sigma = 1.1 \text{ ns}$

Delays added to the clock transmitters to compensate for differences Clock phases at SPD inputs with correction: $\sigma = 0.08$ ns

5 November 2009

12

What we learned?

- Use optical fibers with the same length is an important requirement but ...
- A flexible system is also better
 - Settings to equalize the delays in each channel
 - Settings to adjust the overall time w.r.t. the LHC clock

Tools to monitor the data output

Motivation

- Identify the source of problems and fix the failures in complex systems it is always a very hard tasks
 - ▶ FEE-electronics, Off-detector electronics, Link communication ...
- It is often hard and extremely time consuming to reproduce the problem and to correlate it with external condition
 - ▶ Trigger schema, partition schema, beam dependence ...
- This is the reason why a system capable to monitor the data output, to flag errors and to store the hardware conditions without disturbing the acquisition would help the expert... but, is that feasible?
- If the system would also be able to suggest the proper action and even to fix the problem by himself... it would be a dream!!!!
 - but don't be so excited... we don't have it!!!
 - Although, the "Error handler" tool is extremely useful

R. Santoro

"Error handler" strategy

Off-detector electronics

What we learned?

- The tool is extremely powerful and makes track of the low level information when the errors occur
- It is important to group errors in categories which can be masked accordingly to the expert needs
 - Useful to avoid that warnings fulfill the DB
- Statistic studies could be useful to monitor the electronics stability or to identify frequent failures

Thanks for your attention

Spares

Fast-OR Algorithms

1	Minimum Bias	(I+O)≥th _{IO,mb} and I≥th _{I,mb} and O≥th _{O,mb}
2	High Multiplicity 1	l≥th _{I,hm1} and O≥th _{O,hm1}
3	High Multiplicity 2	l≥th _{I,hm2} and O≥th _{O,hm2}
4	High Multiplicity 3	l≥th _{I,hm3} and O≥th _{O,hm3}
5	High Multiplicity 4	l≥th _{I,hm4} and O≥th _{O,hm4}
6	Past Future Prot	$(I+O)\ge th_{IO,pfp}$ and $I\ge th_{I,pfp}$ and $O\ge th_{O,pfp}$
7	Background(0)	l ≥ O+ offset _O
8	Background(1)	O ≥ I+ offset _I
9	Background(2)	$(I+O) \ge th_{(I+O),bnd}$
10	Cosmic	Selectable coincidence, see following list

Cosmic algorithms:

- ▶ TOP_outer and BOTTOM_outer
- OR_OUTER and OR_INNER
- ▶ DLAYER (\geq 2 FOs in the INNER and \geq 2 FOs in the OUTER)
- TOP_outer and BOTTOM_outer and TOP_inner and BOTTOM_inner
- ► TOP_outer and BOTTOM_outer and OR_INNER
- GLOBAL_OR

Timing optimization

- Fine tuning of the timing for each individual Half-Stave
 - delay added to the clock transmitters to compensate for differences
 - Distribution of clock phases at SPD inputs after correction: $\sigma = 0.08$ ns

Clk outputs

- Fine tuning of the SPD clock phase with respect to the LHC clock (SPD clock 10MHz)
 - Dedicated calibration during collisions has been performed
 - Measure pixel multiplicities versus clock phases
 - Set optimal phase in the clock domain

Fast OR timing

Synchronization

- 40 MHz clocks aligned by equalizing fibers length
- 10 MHz clock phases aligned by broadcast signal on TTC
- One clock period uncertainty left
 -> Measure relative phases
 - Measure arrival time of trigger feedback

Frame alignment

