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Beam control
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Use of Electromagnetic fields F

Steering

dipole
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The magnetic field is more efficient
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For ultra relativistic particles (v =~ ¢) and pE| = cpB),
the required:

electric rigidity (£, p) is: 300MV -> “impossible”

magnetic rigidity (B p) is: 1Tm -> “easy”



Beam control
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Use of Electromagnetic fields F' = q(i + v X ?)

Steering

dipole

.quadrupole

quadrupole

dipole

The magnetic field is more efficient

2
v
Fc = Viy— = Q(EJ_ + VBJ_)
p
pV

For ultra relativistic particles (v =~ ¢) and pE| = cpB),
the required:

electric rigidity (£, p) is: 300MV -> “impossible”

magnetic rigidity (B p) is: 1Tm -> “easy”

Acceleration

A voltage generator induces an electric field Protons always
inside the RF cavity. Its voltage oscillates feel a force in the
with a radio frecuency of 400 MHz. forward direction.

Protons never feel a force
in the backward direction.

Time varying electric fields - RF cavities/resonators
(metal container for electromagnetic field)

The magnetic field does not accelerate at all (F = gv X ﬁ)

DC acceleration if not impossible (ﬂgﬁ - dZ = () thenis

not effective (breakdown voltages)



Particle trajectory & Coordinate system

The calculation of single particle trajectories (in complex fields) is the backbone of beam dynamics

- o - T Area, A= |e1 x e2
l/l I ﬂ I/tO l/t — (x’pX’ y’py, l’ 5) (’2‘(%1

The goal is to find a map . (for any lattice piece) that respect
the properties of the system (be symplectic and accurate enough) | Area, A= ef x(e




Particle trajectory & Coordinate system

The calculation of single particle trajectories (in complex fields) is the backbone of beam dynamics

- _ - —> _ T Area, A = |e1 X e
l/t I % I/tO l/l — (x, px, y, py, l, 5) e-z‘el
The goal is to find a map . (for any lattice piece) that respect ¢
the properties of the system (be symplectic and accurate enough) , | Area, A'=ef xics
Coordinate system (curvilinear) is “following” the design orbit: dipole

e

X

.quadrupole

® is rotating in dipole magnets due to curved design orbit quadrupole
............ 3

s

® is not co-moving with reference particle

€

@ e e s fjuadrupole

s-position is measured along the reference orbit

dipole



Equations of motion In accelerator

Use of Hamiltonia formalism

Generalized equations of motion

dp oH
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Equations of motion in accelerator

Use of Hamiltonia formalism

Generalized equations of motion
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Scalar potential for acceleration - RF cavities
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Equations of motion in accelerator

Use of Hamiltonia formalism

Generalized equations of motion

dp oH
ﬁ:a_H q:x,y,l —q: pq:pxapy95
ds  op, ds dq
H(x l5'S)—£—(1+hX) 5+1 99 —(p. —a)> — (p, — a,)? : - o
’px’y’py’ AR ,B \ ,B CPO DPx X py Y ﬁ2},2 Fs

Scalar potential for acceleration - RF cavities

V Wprl cP
¢ = RE (Sin(qps)a)RFz — COS (gas Al ) c) Onpéz

CURFCO C

Vector potential for steering - most common multipoles (2n poles)

_q q N e+t @+WW
=a,=0 a, = POA POB,,efiR [E(bn+zan) - ] =—-R [Z( | + ks, _
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Deflection & Focusing

For beam deflection is need a homogenous (constant) magnetic field:

e dipole magnet — B = By = const = a, =

>

Superconducting:
field determined by
geometry of coils

(j(@) o cos @)

e

]

!
i

Iron dominated (warm): 418
field determined by ge=
geometry of poles
(2 flat poles)

\\ ) :
‘cture&n from G. de Rijk, arXiv:2017.03177‘
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Deflection & Focusing

For beam deflection is need a homogenous (constant) magnetic field:

. kohx?
e dipole magnet - B = B = const — a; = — kyx 1 *-
2(1 + hx)
Iron dominated (warm): gabs Superconducting:
field determined by field determined by
geometry of poles geometry of coils
(2 flat poles) (j(h) x cos ¢) Ve
’ctur;@n from G. de Rijk, arXiv:2017.03177‘
YA
For beam focusing a magnetic field that linearly increase from magnet center:
De-focusing
e quadrupole magnet — B, +iB, = ki(x +iy)— a, = 21 (x? — yz) Focusing

S A

Superconducting:
field determined by
geometry of coils

(j(#) x cos2¢)

lIron dominated (warm):
field determined by
geometry of poles
(4 hyperbolic poles)

Need for FODO cells
for focusing at x and y

o 11

Picture taken from https://cdé.cern.ch/record/ 1333874/plots

Picture taken from https://cds.cern.¢h/record/1333874/plots



Linear transfer maps

i = M iy = M iiy+m

w%
—w3s, ¢4 . 00 hs.
V= 0 0 C, 5, U 0 —
0 i T e 0
e G
wa:: BO 0 w:v
0 0 0 00 1
For “ideal”:

® drifts (nofield) - h=ky=k =0
® dipole magnets = 1 =ky #0, k; =0

® quadrupole magnets — 7=k, =0, k; #0

® combined dipole-quadrupole magnets — h =k, #0, k; # 0

(h — k’o)lggaj
(h — ]{0)855
0
0
0
0

sin(w, L)
e ,
Wy
¢ = cosla L)
sinh (w,, L)
Sy — L ;
Wy
¢, = cosh(w, L),
- h
h=—,
5o
we = \/hko + ki,

Wy = \/H

12



U

Linear transfer maps

Particle trajectory through linear lattice:
oo *Mpg - Mgz - Mpg - Mys - Mpy - Mgz - M, - My, 7
m

Transfer matrix M

quadrupole

.....

dipole

.
.
-t
o

dipole

X

--..guadrupole
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Linear transfer maps

Particle trajectory through linear lattice: quadrupole

.....

dipole n

X
.quadrupole

= ... Mpg My Mpg- Mys - Mpy - My - My, - My, il /
Transfer matrix M s
dipole
q(s) = \/Zﬂq(s)]q COS//tq(S) ® ﬁq(s) defines beam envelop Shape Pr A |
Periodic solution in (x,y): 2 ol /bmpe:—(,,
2Jq . dﬂq 1 -+ aq
p,(s) = — 5o (sm p(s) + a,(s)cos ,uq(s)) a, = — o v, = 7

A

machines (const. ellipse area )

3.
xlmmlz./\/\ ® J, is characteristic for each particle
\_d// . . .
1 Txﬁ, and constant of motion in linear

| | J=O.5<y 2 1 2g p+,5p2>
Particle orbit 1 1 11Pq ™ Paby

14



Linear transfer maps

Particle trajectory through linear lattice:

dipole n

Y

.quadrupole

quadrupole 9

U= ... -Mpg- My -Mpg- Mys - Mpy - My - My, - My, it / “
Transfer matrix M s
dipole
o(s) = \/2ﬁq(s)fq cos 1 (s) ® /5, (s) defines beam envelop shape pr4
Periodic solution in (x,V):
(%,y) . 2Jq(. ot ()) dp, [ +a2
)= — S111 \) a \5)COS \) - —_- — =

A Pq B,(5) Hq q Hq % L A,

3.
© [mm] D ® J is characteristic for each particle

| and constant of motion in linear

machines (const. ellipse area )

_ 2 2
J,=0.5 <yqq +2a,9p, + ,quq>

x[mm]; : : — Beam enVE|Op: Uq(S) — \/ﬁq(S)gq

0 - —
£, = < Jq >

:;: \

B




Longitudinal motion

In synchrotron during acceleration:
® the magnetic fields should increase with time (keep particles on the closed orbit)

® wy - should increase (match increase of revolution frequency)

® In machines with synchrotron radiation, like FCC-ee, there is energy-loss (that is energy dependant)
® The synchrotron motion is damped toward an equilibrium bunch length and energy spread

16



Longitudinal motion

In synchrotron during acceleration:
® the magnetic fields should increase with time (keep particles on the closed orbit)

® wy - should increase (match increase of revolution frequency)

VRF A
M, M, stable synchr. particle for s+ AE bunch
eV___Pl __________ Pz_‘_{______i7_>_(2 _________ . R
S N, i\ <0 i N, above transition ¥ / bU Cket
: : —
9, ¢, \ early «<— - — - — - - late / Q= C()RFZ ! At (Ol’ ¢)
separatrix (bucket) \

\>/“\\mstable region . - R

/\\ Forn > 0 Bucket area: longitudinal acceptance

| H / b = wgpt (above transition)
5 stable region

AE

—

Bunch area: longitudinal beam emittance = oo,
(not unique definition)

\—-

® In machines with synchrotron radiation, like FCC-ee, there is energy-loss (that is energy dependant)

® The synchrotron motion is damped toward an equilibrium bunch length and energy spread
17



Non-linear elements & imperfections

To improve the performance of the collider, the use of non-linear magnets (sextuples, octuples, ...) are needed
Focal length

o

5> 0 r Sextupole

® As an example, the sextuples can correct the focussing S=0 m\

issues for particles with not ideal energy (6 # 0) e
s<ol) ]

\/ Dispersion
Quadrupole D+0




Non-linear elements & imperfections

To improve the performance of the collider, the use of non-linear magnets (sextuples, octuples, ...) are needed
Focal length

o

5> 0 r Sextupole

® As an example, the sextuples can correct the focussing S=0
issues for particles with not ideal energy (0 # 0) g —
5<O\ /L |
\/ Dispersion
Quadrupole D+0

Any magnet imperfections experienced periodically (circular machines) can be detrimental

for the beam quality if resonance conditions are satisfied

le = 0.202 X 27 1y = 0.330 X 21
3t o 31 - '

//lq(SO ‘ SO -+ Co)
Tune: v, =

4 27

® As an example, the phase space for different tunes in
the presence of a single sextupole




Need for non-linear magnets

It is paramount to have some understanding of machine error and nonlinear dynamics

for optimizing the design and operation of many accelerator systems

® Among the different strategies to mitigate the
impact of the machine errors and improve the
particle non-linear dynamic is to properly

choose the working point (v,, vy, ) so to avoid
the resonance conditions

m, +my, = I

Where m,, m, and [ are integers

Resonance is of order |m, | + [m, ]|

Resonances up to order 2

1.0 4

0.8

0.6

1/

0.4

0.2

0.0 |-

0.0 0.2 0.4 0.6 0.8 1.0

/
Vv,

normal resonances
(= even m)

skew resonances
(= odd my)
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Need for non-linear magnets

It is paramount to have some understanding of machine error and nonlinear dynamics

for optimizing the design and operation of many accelerator systems

® Among the different strategies to mitigate the
impact of the machine errors and improve the
particle non-linear dynamic is to properly

choose the working point (v,, vy, ) so to avoid
the resonance conditions

m, +my, = I

Where m,, m, and [ are integers

Resonance is of order |m, | + [m, ]|

Resonances up to order 3
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Need for non-linear magnets

It is paramount to have some understanding of machine error and nonlinear dynamics

for optimizing the design and operation of many accelerator systems

® Among the different strategies to mitigate the
impact of the machine errors and improve the
particle non-linear dynamic is to properly

choose the working point (v,, vy, ) so to avoid
the resonance conditions

m, +my, = I

Where m,, m, and [ are integers

Resonance is of order |m, | + [m, ]|

Resonances up to order 4
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Need for non-linear magnets

It is paramount to have some understanding of machine error and nonlinear dynamics

for optimizing the design and operation of many accelerator systems

® Among the different strategies to mitigate the
impact of the machine errors and improve the
particle non-linear dynamic is to properly

choose the working point (v,, vy, ) so to avoid
the resonance conditions

m, +my, = I

Where m,, m, and [ are integers

Resonance is of order |m, | + [m, ]|

1/

1.0

0.8 |-

0.6 |

0.4 }

0.2

0.0

Resonances up to order 5

0.0

0.2

0.4

/
V.,

0.6

0.8

1.0

normal resonances
(= even m)

skew resonances
(= odd my)
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Need for non-linear magnets

It is paramount to have some understanding of machine error and nonlinear dynamics
for optimizing the design and operation of many accelerator systems

® |n high intensity/energy machines like the FCC:

—~
N

® Beam-Beam Effects (due to beams cross each Resonances up to order 5
other, the electromagnetic fields generated ] I 0 IR A T B
) 2 ‘ K N : , N
by one beam can affect the other beam) &a%gggéfgg/ ‘
® Space Charge Effect (mutual repulsion "L ---&"ﬁ'ﬁﬁggﬁﬁ'a“ < . hormalresonances
. . ""“@P?A?’elug”” | (=even m,)
between particles in the beam) ool /bﬂﬁ,ﬁ -‘vaggﬁg\
- - | \ - \ %
® Impedance Effects (interactions between the = : ::: :%@g#:\; ; skew resonances
beam and the vacuum chamber or other 0.4 %\t’iap— mﬂg%j p "~ (=odd m,)
structures) _. ‘-{‘Z{%Eg%%’;g} < y
® Electron Cloud (high-energy particles hit the v Wﬁ%ﬁ?ﬁij; S, ‘*-J
chamber walls/residual gas or the emitted SR, 0o A"“‘JV N4 “ ‘
can release secondary electrons) - A L A s LA A 2ol

® Wakefields (beam induce electromagnetic

fields that affect subsequent particles)
24



Complexity, as usual

Dynamic

Ex | €y

| A
Sawtooth

Low Emit, \/
Tuning
# of IP

Solenoid

RF section

Injection

Current

x-y coupling

Crab

‘ "’ .Angle
‘{{\al quad’

&y

.and neEs




Current FCC-ee parameters

Tow lattice designs with different features:

® Global Hybrid Correction optics

® | ocal Chromaticity Correction optics

® | attices can be found here

FCC-ee collider parameters for the GHC lattice at Z, Nov. 6, 2024.

Beam energy (GeV] 45.6
Layout PA31-3.0
# of IPs 4
Circumference [km] 90.658728
Bend. radius of arc dipole [km] 10.021
Arc cell Long 90/90
Momentum compaction o, [1079] 28.67
Arc sext families 75
Energy loss / turn (GeV] 0.0390
SR power / beam [MW] 50 -
Beam current [mA] 1283
Harm. number for 400 MHz 121200
RF frequency (400 MHz) MHz 400.787129
Long. damping time [turns] 1171
Beam crossing angle at IP 6, [mrad] +15
Crab waist ratio (%] 50
RF voltage 400/800 MHz (GV] 0.079 / 0 0.103 / 0 0.120 / 0
RF acceptance (%] 1.06 1.41 1.62
Synchrotron tune Q 0.0289 0.0340 0.0371
Colliding bunches / beam 11200 11220
Colliding bunch population [1011] 2.180 2.176
Hor. emittance at collision ¢, [nm] 0.70
Ver. emittance at collision ¢, [pm] 1.90 2.25 2.40
Lattice ver. emittance €, jattice [pm] 0.76 1.06 1.09

/y [mm] 110 / 0.7 130 / 0.7
Transverse tunes Q/, 218.158 / 222.200 | 218.144 / 222.220 | 218.158 / 222.220
Chromaticities Q;, ,, +5/ +5
Energy spread (SR/BS) o5 %] 0.039 / 0.110 0.039 / 0.121 0.039 / 0.123
Bunch length (SR/BS) o, [mm] 5.53 / 15.7 4.70 / 14.6 4.31 / 13.7
Energy acceptance (DA) (%] +1.0
Beam-beam &, /€, ¢ 0.0022 / 0.0985 0.0025 / 0.0981 0.0034 / 0.1008
X-Z threshold param. Q,/&, 131 13.6 10.9
Piwinski angle (0,0, ps)/o* 26.9 25.0 21.4
Lifetime (q + BS + lattice) [sec] 13000 3100 2600
Lifetime (lum)® sec] 1320 1320 1320
Luminosity / IP [10%* /cm?s] 145.2 145.0 145.1

Design and parameters
dominated by choice to
allow for 50 MW
synchrotron radiation
power per beam
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https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.19.111005
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.26.021601
https://acc-models.web.cern.ch/acc-models/fcc/

Thank you for your time



