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 Re-using CERN infrastructure
FCC-ee ~2045-2060 

90.7 km with 8 surface points

FCC-hh ~2070-2090 
Compatible lattice designs
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(February 2024)



Beam control

3

Steering
Use of Electromagnetic fields  ⃗F = q( ⃗E + ⃗v × ⃗B )

The magnetic field is more efficient 

 

      

For ultra relativistic particles ( ) and , 
the required: 

electric rigidity ( ) is: 300MV -> “impossible” 

magnetic rigidity ( ) is: 1Tm -> “easy”

Fc = γrm0
v2

ρ
= q(E⊥ + vB⊥)

=
pv
q

= ρ(E⊥ + vB⊥)

v ≈ c ρE⊥ ≡ cρB⊥

E⊥ρ

B⊥ρ
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Steering Acceleration
Use of Electromagnetic fields  ⃗F = q( ⃗E + ⃗v × ⃗B )

Time varying electric fields - RF cavities/resonators 
(metal container for electromagnetic field)  

The magnetic field does not accelerate at all ( ) 

DC acceleration if not impossible ( ) then is 

not effective (breakdown voltages)

F = q ⃗v × ⃗B

∮ ⃗E ⋅ ⃗dl = 0

The magnetic field is more efficient 

 

      

For ultra relativistic particles ( ) and , 
the required: 

electric rigidity ( ) is: 300MV -> “impossible” 

magnetic rigidity ( ) is: 1Tm -> “easy”

Fc = γrm0
v2

ρ
= q(E⊥ + vB⊥)

=
pv
q

= ρ(E⊥ + vB⊥)

v ≈ c ρE⊥ ≡ cρB⊥

E⊥ρ

B⊥ρ



Particle trajectory & Coordinate system
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The calculation of single particle trajectories (in complex fields) is the backbone of beam dynamics

The goal is to find a map  (for any lattice piece) that respect 
the properties of the system (be symplectic and accurate enough)

ℳ

⃗u = ℳ ⃗u0 ⃗u = (x, px, y, py, l, δ)T
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The calculation of single particle trajectories (in complex fields) is the backbone of beam dynamics

The goal is to find a map  (for any lattice piece) that respect 
the properties of the system (be symplectic and accurate enough)

ℳ

Coordinate system (curvilinear) is “following” the design orbit: 

• is rotating in dipole magnets due to curved design orbit 

• is not co-moving with reference particle 

• s-position is measured along the reference orbit

⃗u = ℳ ⃗u0 ⃗u = (x, px, y, py, l, δ)T



Equations of motion in accelerator
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Use of Hamiltonia formalism 

H(x, px, y, py, l, δ; s) =
δ
βr

− (1 + hx) (δ +
1
βr

−
qϕ
cP0 )

2

− (px − αx)2 − (py − αy)2 −
1

β2
r γ2

r
+ αs

dq
ds

=
∂H
∂pq

dpq

ds
= −

∂H
∂q

Generalized equations of motion

q : x, y, l pq : px, py, δ
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Use of Hamiltonia formalism 

H(x, px, y, py, l, δ; s) =
δ
βr

− (1 + hx) (δ +
1
βr

−
qϕ
cP0 )

2

− (px − αx)2 − (py − αy)2 −
1

β2
r γ2

r
+ αs

dq
ds

=
∂H
∂pq

dpq

ds
= −

∂H
∂q

ϕ =
VRF

ωRFC0 (sin(φs)ωRFz − cos (φs −
ωRFz

c ) c) −
cP0

2q
ηpδ2

Generalized equations of motion

Scalar potential for acceleration - RF cavities

q : x, y, l pq : px, py, δ
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Use of Hamiltonia formalism 

H(x, px, y, py, l, δ; s) =
δ
βr

− (1 + hx) (δ +
1
βr

−
qϕ
cP0 )

2

− (px − αx)2 − (py − αy)2 −
1

β2
r γ2

r
+ αs

αs =
q
P0

As = −
q
P0

Brefℜ [
∞

∑
n=2

(bn + ian)
(x + iy)n

nRn−1
ref ] = − ℜ [

∞

∑
n=2

(kn−1 + iksn−1)
(x + iy)n

n! ]

dq
ds

=
∂H
∂pq

dpq

ds
= −

∂H
∂q

ϕ =
VRF

ωRFC0 (sin(φs)ωRFz − cos (φs −
ωRFz

c ) c) −
cP0

2q
ηpδ2

Generalized equations of motion

Scalar potential for acceleration - RF cavities

Vector potential for steering - most common multipoles (2n poles)

q : x, y, l pq : px, py, δ

αx = αy = 0



Deflection & Focusing
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For beam deflection is need a homogenous (constant) magnetic field: 

•  dipole magnet    → B = By = const → as = − k0x +
k0hx2

2(1 + hx)

Iron dominated (warm): 
field determined by 
geometry of poles 

(2 flat poles)

Superconducting: 
field determined by 

geometry of coils 
( )j(ϕ) ∝ cos ϕ
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For beam deflection is need a homogenous (constant) magnetic field: 

•  dipole magnet    → B = By = const → as = − k0x +
k0hx2

2(1 + hx)

Iron dominated (warm): 
field determined by 
geometry of poles 

(2 flat poles)

Superconducting: 
field determined by 

geometry of coils 
( )j(ϕ) ∝ cos ϕ

For beam focusing a magnetic field that linearly increase from magnet center: 

•  quadrupole magnet   → By + iBx = k1(x + iy)→ as = −
k1

2
(x2 − y2)

Iron dominated (warm): 
field determined by 
geometry of poles 

(4 hyperbolic poles)

Superconducting: 
field determined by 

geometry of coils 
( )j(ϕ) ∝ cos 2ϕ

De-focusing 
      Focusing

Need for FODO cells 
for focusing at x and y



Linear transfer maps
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⃗u = ℳ ⃗u0 = M ⃗u0 + m

M = m =

For “ideal”: 
• drifts (no field)  

• dipole magnets  

• quadrupole magnets  

• combined  dipole-quadrupole magnets 

→ h = k0 = k1 = 0

→ h = k0 ≠ 0, k1 = 0

→ h = k0 = 0, k1 ≠ 0

→ h = k0 ≠ 0, k1 ≠ 0



Linear transfer maps
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Particle trajectory through linear lattice:

⃗u = … ⋅ MD8 ⋅ Md7 ⋅ MQ6 ⋅ Md5 ⋅ MD4 ⋅ Md3 ⋅ MQ2 ⋅ Md1 ⃗u0

Transfer matrix M
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Particle trajectory through linear lattice:

⃗u = … ⋅ MD8 ⋅ Md7 ⋅ MQ6 ⋅ Md5 ⋅ MD4 ⋅ Md3 ⋅ MQ2 ⋅ Md1 ⃗u0

Transfer matrix M

Jq = 0.5 (γqq2 + 2αqqpq + βqp2
q)Particle orbit

•  defines beam envelop shape  

•  is characteristic for each particle 
and constant of motion in linear 
machines (const. ellipse area )

βq(s)

Jq

αq = −
dβq

2ds
, γq =

1 + α2
q

βq

q(s) = 2βq(s)Jq cos μq(s)

pq(s) = −
2Jq

βq(s) (sin μq(s) + αq(s)cos μq(s))
Periodic solution in (x,y):
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Particle trajectory through linear lattice:

⃗u = … ⋅ MD8 ⋅ Md7 ⋅ MQ6 ⋅ Md5 ⋅ MD4 ⋅ Md3 ⋅ MQ2 ⋅ Md1 ⃗u0

Transfer matrix M

s1       s2    s3

Beam envelop:    σq(s) = βq(s)εq

Jq = 0.5 (γqq2 + 2αqqpq + βqp2
q)Particle orbit

s1                                    s2                       s3

•  defines beam envelop shape  

•  is characteristic for each particle 
and constant of motion in linear 
machines (const. ellipse area )

βq(s)

Jq

αq = −
dβq

2ds
, γq =

1 + α2
q

βq

q(s) = 2βq(s)Jq cos μq(s)

pq(s) = −
2Jq

βq(s) (sin μq(s) + αq(s)cos μq(s))
Periodic solution in (x,y):

εq = < Jq >



Longitudinal motion
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• In machines with synchrotron radiation, like FCC-ee, there is energy-loss (that is energy dependant)  
• The synchrotron motion is damped toward an equilibrium bunch length and energy spread

VRF

In synchrotron during acceleration: 
• the magnetic fields should increase with time (keep particles on the closed orbit) 
•  should increase (match increase of revolution frequency)ωRF



Longitudinal motion
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In synchrotron during acceleration: 
• the magnetic fields should increase with time (keep particles on the closed orbit) 
•  should increase (match increase of revolution frequency)ωRF

separatrix (bucket)

ϕ = ωRFt

ΔE

bunch
bucket

Bucket area: longitudinal acceptance

Bunch area: longitudinal beam emittance  
               (not unique definition)

= πσEσt

• In machines with synchrotron radiation, like FCC-ee, there is energy-loss (that is energy dependant)  
• The synchrotron motion is damped toward an equilibrium bunch length and energy spread

VRF

For   
(above transition)

η > 0

stable region

unstable region



Non-linear elements & imperfections
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To improve the performance of the collider, the use of non-linear magnets (sextuples, octuples, …) are needed

  δ > 0

  δ = 0

  δ < 0

• As an example, the sextuples can correct the focussing 
issues for particles with not ideal energy ( )δ ≠ 0
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To improve the performance of the collider, the use of non-linear magnets (sextuples, octuples, …) are needed

  δ > 0

  δ = 0

  δ < 0

• As an example, the sextuples can correct the focussing 
issues for particles with not ideal energy ( )δ ≠ 0

Any magnet imperfections experienced periodically (circular machines) can be detrimental 
for the beam quality if resonance conditions are satisfied 

Tune: νq =
μq(s0 |s0 + C0)

2π

• As an example, the phase space for different tunes in 
the presence of a single sextupole



Need for non-linear magnets
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It is paramount to have some understanding of machine error and nonlinear dynamics 
for optimizing the design and operation of many accelerator systems

• Among the different strategies to mitigate the 
impact of the machine errors and improve the 
particle non-linear dynamic is to properly 
choose the working point ( ) so to avoid 
the resonance conditions

νx, νy, νs

mxνx + myνy = l

Where  are integers 

Resonance is of order 

mx, my and l

|mx | + |my |
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It is paramount to have some understanding of machine error and nonlinear dynamics 
for optimizing the design and operation of many accelerator systems

• Among the different strategies to mitigate the 
impact of the machine errors and improve the 
particle non-linear dynamic is to properly 
choose the working point ( ) so to avoid 
the resonance conditions

νx, νy, νs

mxνx + myνy = l

Where  are integers 

Resonance is of order 

mx, my and l

|mx | + |my |

• In high intensity/energy machines like the FCC: 
• Beam-Beam Effects (due to beams cross each 

other, the electromagnetic fields generated 
by one beam can affect the other beam) 

• Space Charge Effect (mutual repulsion 
between particles in the beam) 

• Impedance Effects (interactions between the 
beam and the vacuum chamber or other 
structures) 

• Electron Cloud (high-energy particles hit the 
chamber walls/residual gas or the emitted SR, 
can release secondary electrons) 

• Wakefields (beam induce electromagnetic 
fields that affect subsequent particles)



Complexity, as usual
FCC-ee Collider



Current FCC-ee parameters
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Design and parameters 
dominated by choice to 

allow for 50 MW 
synchrotron radiation 

power per beam

Tow lattice designs with different features: 

• Global Hybrid Correction optics 

• Local Chromaticity Correction optics 

• Lattices can be found here

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.19.111005
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.26.021601
https://acc-models.web.cern.ch/acc-models/fcc/
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Thank you for your time


