ML4EP 2024 Plan of Work

ML4EP Meeting - 16/12/2024

ML4EP

- A new initiative for common ML activities within SFT started this year
- Built to federate, consolidate and coordinate existing ML activities within SFT projects:
 - ML for fast simulation
 - developments of models for fast simulation of calorimeter showers
 - ML software in ROOT
 - interfaces for using external ML software within ROOT (e.g. Batch generator)
 - C++ inference of ML models (SOFIE)
- ML activities of NGT WP1
 - hls4ml (ML for FPGA)
 - Model compression and training
 - Interfaces for ML inference

Fast Simulation: Future Plans

- Continue exploring new generative ML techniques (rapidly evolving)
- Further developments of CaloDiT
 - optimise architecture, lighter attention mechanism, hyperparameter optimisation
 - model inference optimisation (distillation, flow-matching,...)
- Continue the collaboration with experiments
 - ATLAS:
 - test CaloDiT on ATLAS on both EM and hydronic showers.
 - improve energy modelling with potential flow model on top of CaloDiT
 - CMS: test CaloDiT in HGCal
 - LHCb: support the implementation of CaloDiT
 - FCCee: Ensure ParO4 models are working with FCCeeCLD and FCCeeALLEGRO
 - Open Data Detector: dataset generation and support FastCaloSim demonstrator
 - Community effort: next edition of Calo Challenge
- Exploit point/cloud representation for showers (summer student??)
- NTNU project and collaboration with Linz?

Future Plans for ML Software (SOFIE)

SOFIE

- Implement new operators according to needs
 - already have a large number of operators
 - can parse ParticleNet, GNN1 from ATLAS and (almost) distilled diffusion model
 - expressed interest in using SOFIE also from non-CERN experiments (Belle-II, ePIC)
- Memory and CPU optimisations
 - better usage of memory in computational graph
- GPU porting (e.g. using ALPAKA?)
 - interest from CMS to have optimal interface to ML inference
- interoperability with HLS4ML?

Future Plans for ML Software

- Maintain benchmark of different ML inference solutions
- Model repository in cvmfs
- Promote the batch generator as a convenient interface for training
 - integrate into the currently developed training framework
 - b-hive from CMS and Salt/FTAG from ATLAS
 - integration with <u>ml.cern.ch</u> (based on kubeflow)
- Support ML workflows for Simulation-Based Inference
 - Integration of ML with statistical tools (RooFit)

NGT Plans - 1.7

- Interfaces for ML inference
 - not clear milestones defined in NGT proposal in first 2 years
- Will start discussions with experiments (CMS and LHCb) on possible activities
 - Investigate possible solutions
 - SOFIE (with porting to GPU with ALPAKA)
 - Interfaces to TensorRT and ROCm for NVidia and AMD GPUs
 - Explore new possibilities (e.g. <u>AITemplate</u>)
 - Develop benchmarks for the different solutions using HEP models

NGT Plans - 1.2

• Milestones from NGT proposal

Time	Description	Deliverable/Milestone
6 m	Demonstrator of Knowledge Distillation workflow to real-life LHC use cases	Integration in hls4ml on multiple backends
12 m	- Deployment of transformers on FPGAs - Demonstrator of Knowledge Distillation workflow to real-life LHC use cases	- Integration in hls4ml on multiple backends - Journal publication on Knowledge Distillation on Transformer use case
18 m	Support for generic Graph Neural Networks	- Improved code-generation infrastructure to support general graphs on multiple hls4ml backends - Journal publication on Graph NN fast inference
24 m	- Support for generic Transformer network - Mid-point hls4ml release	- Journal publication describing novel hls4ml functionalities and example applications - Tutorial describing new hls4ml functionalities

NGT Plans - 1.3

• Milestones from NGT proposal

Time	Description	Deliverable/Milestone
6 m	Baseline development: large-scale training and optimization workflow on at least one end-to-end training library (Pytorch/Tensorflow)	Integration of the developed algorithms on the NNLO library (large-scale training package for CERN custom training workflow on HPC infrastructure)
12 m	Support of optimal workflows for hardware-aware pruning techniques with resource estimation.	 Demonstrator of network training and architecture scan for a concrete benchmark use case from WP2 or WP3 NNLO tutorial showcasing novel functionalities Journal publication
18 m	Support for Knowledge Distillation at training	integration of the developed compression workflows in the NNLO library
24 m	 AutoML-like flow towards automatic optimization of quantization and pruning at training time Application of hardware-aware training on real-life use cases from WP2 and WP3 	- Mid-point NNLO software release - Journal publication - NNLO tutorial showcasing novel functionalities

POW 2025

- We could follow ROOT reporting
- Make initial Google spreadsheet with the different items
 - add the priority
 - length of tasks (e.g. S, M, L)?
 - assign a person responsible for the task
- Monitor during the year looking if a task is
 - DONE, PARTIALLY DONE or NOT DONE

Backup Slides

Machine Learning

LM, JR

Priority 1:

See Lorenzo's talk <u>Vision for a new</u>
<u>ML/Al activity</u>!

- Put RBatchGenerator in production
- Consolidate RBDT
- Support of integration of SOFIE in experiments Fast Simulation pipelines
- Add support in SOFIE for NVidia GPUs in CUDA
- Continue to add support for the ONNX operators requested by experiments

Priority 2:

- ► Make <u>HLS4ML</u> interoperable with SOFIE
- Streamline ROOT's inference interface, making it able to use models for Python ML frameworks (e.g. Keras/TF) directly

We want to support experiments inference (C++) for cases that are difficult to implement or require heavy dependencies.

We don't want to compete with existing industry tools for training.

- Develop transformer-based ML models
 - Establish the best single-geometry diffusion model
 - Work on inference optimisation
 - Extend to different geometries and test adaptation capabilities, measure savings on training time
- Experiment-specific work (in collaboration with members of the experiments)
 - LHCb
 - Find the best working model for hadronic showers (possibly a transformer-based model)
 - ATLAS
 - New Fellow (Peter Mckeown) will continue the work of D. Salamani on ML for ATLAS, implementing a data structure that allows to test VAE and transformer-based models
 - Co-supervise work of J. Beirer on FastCaloSimV2-based classical shower simulation
 - CMS
 - Implement data production sample with structure that allows to test transformer-based models on HGCal
- Others
 - Speed-up simulation of oriented crystals detector
 - Community efforts: CaloChallenge and Open Data Detector