Energy Loss of Muons in the CLIC ILD Detector

Sinan Kefeli Supervisors: Jacopo Nardulli & Erik van der Kraaij

Outline

- Aim of project: muon background
- Brief summaries of:
- Particle Detection
- Catastrophic muons
- ILD Detector Overview
- Simulations
- My results

Aim of the Project

- Beam Halo Muons are pair production of muons from beam particles and beam gas
- These muons appear as background at the detectors in a physics event
- Would like to separate the background from the events
- My part: determining how often and how much energies are deposited from the muons

Particle Detection

- Detect particles by interaction with materials
- Energy loss is statistical and fluctuates from event to event
- Particles lose energy inside matter, which is a Landau Distribution: Prob(energy loss E) inside matter of thickness h

Catastrophic Muons (Atlas paper)

- Testbeam at CERN H8
- Muons traversing matter mainly lose energy by ionization
- Total energy loss increases with increasing momentum (atlas paper: <u>http://www.sciencedirect.com/science/article/pii/S0920563207009747</u>)

(a) Energy deposited in the calorimeters by particles tagged as muons.

CLIC ILD Detector

Parameters for the calorimeter layers. The number of layers N_{Layers} , the thickness of one layer d_{Layer} , the absorber material, its thickness d_{Abs} , the active material and its thickness d_{Act} is given.

	N Layers	d _{Layer} [mm]	Absorber	$d_{\rm Abs} [{\rm mm}]$	Active	$d_{\rm Act} [{\rm mm}]$
ECal 1	20	5.3	Tungsten	2.1	Silicon	0.50
ECal 2	9	7.3	Tungsten	4.1	Silicon	0.50
HCal Barrel	75	16.5	Tungsten	10.0	Scintillator	5.00
HCal Endcap	60	26.5	Iron	20.0	Scintillator	5.00

CLIC ILD Detector

My simulations were on the HCal only

Figure 1: Dimensions of the CLIC_ILD_CDR model as implemented for the simulation. All values are given in millimetre and correspond to Table 1.

Simulations

Muons with momenta:

- 5 GeV
- 20 GeV
- 50 GeV
- 100 GeV
- 500 GeV
- 1000 GeV

are simulated with Mokka 10,000 events for each momenta

Number of hits in layers

Clustering

How Much Energy In Clusters

- IMIP = 0.00082 GeV independent of momentum of the muon
- Measure the energy stored in the clusters in terms of MIPs

Energy stored in layers - Peaks

Cluster definition

- Some events have higher energy depositions
- Determining cut values
- Clusters:
- -Many particles in the layer
- -More energy storage

Cluster Definition – Number Cut

Cluster definition energy cut

Cluster Cut

Cluster energy in 10 layers

- How often do clusters occur?
- How much energy is stored in clusters?

How Often Do Cluster Occur – 30MIP

Muons with different momenta are simulated for 10,000 events

Energy stored in clusters in MIPs for 30 MIP cut

MPV and Sigma for 30 MIP cut

How Often Do Cluster Occur – 8MIP

Muons with different momenta are simulated for 10,000 events

Energy stored in clusters in MIPs for 8 MIP cut

MPV and Sigma for 8 MIP cut

Conclusions

- Investigated the energy loss of muons by identifying clusters
- Looked at cluster frequency and the amount of energy lost by the clusters
- Comparison of different energy cut definition for the clusters
- Measured cluster energy that increases with increasing muon momentum

backup

Catastrophic Energy Loss

- Pair Production
- Bremsstrahrlung
- Nuclear Interactions
- Knock-on electrons

In this regime, these effects dominate over the energy lost due to ionization.

Landau Distribution – Energy loss for 100 GeV muons inside W

