Report from the CP(t)&UT angles group

HFLAV All-Hands Meeting

Jordy Butter, Tim Gershon, Matt Kenzie, Kenkichi Miyabayashi, Michele Veronesi

15/01/2025

New developments: software modernisation

- Main goals:
 - New combination framework for our HFLAV subgroup
 - New webpage for the results
 - o Publicly available code
- Gitlab repo: [ut-combo]
- See also: [report by Tim]

Current combination frameworks

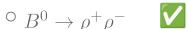
Three different software packages used:

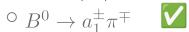
1. COMBOS

- sin(2β) from B0→J/ψKS, etc.
- Handles correlations of systematics between different experiments (common nuisance parameters)
- Old (FORTRAN) code

2. PhiThreeAverager

- Most results
- Old (C++) code
- 3. GammaCombo (https://gammacombo.github.io/)
 - Combination of results for α and γ
 - Modern, well-maintained C++
 - No need to replace


New combination framework


- Replace PhiThreeAverager and COMBOS
- Starting point: Combination Code (CoCo)
 - Repository [GitLab], documentation [link]
 - Results are stored in *ResultSets*: json files with one or multiple measurements
 - Can handle correlations between measurements and change of parametrisation
- Plan:
 - Python-based
 - Minimisation: iminuit
 - Inputs: json files (ie ResultSets)
 - Matplotlib plots
 - Open-source
- Points of attention:
 - Asymmetric errors
 - Rescaling experimental results to common set of input parameters

Current status

- Minimising a χ^2 with iminuit (ie CoCo)
- Combination results -> json file
- Reproduced symmetric combinations
- For example:

$$\circ B^0 \to \pi^+\pi^-$$

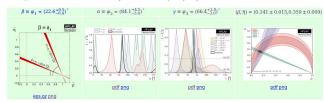
- Gitlab page in place: [ut-combo]
 - Gitlab issues to keep track of to-dos

```
"ResultSetLabel": "Comb".
"Name": "C CP",
"Error": 0.030145
"Name": "S CP",
    0.29, 1.00
```

new combination $B^0 \to \pi^+\pi^-$

Experiment	$S_{CP}(\pi^{+}\pi^{-})$	C _{CP} (π ⁺ π ⁻)	Correlation
BaBar N(BB)=467M	$-0.68 \pm 0.10 \pm 0.03$	$-0.25 \pm 0.08 \pm 0.02$	-0.06 (stat)
Belle N(BB)=772M	$-0.64 \pm 0.08 \pm 0.03$	$-0.33 \pm 0.06 \pm 0.03$	-0.10 (stat)
LHCb Run 1 ∫Ldt=3.0 fb ⁻¹	$-0.63 \pm 0.05 \pm 0.01$	$-0.34 \pm 0.06 \pm 0.01$	0.45 (stat)
LHCb Run 2 fLdt=1.9 fb ⁻¹	$-0.706 \pm 0.042 \pm 0.013$	$-0.311 \pm 0.045 \pm 0.015$	0.394 (stat) 0.306 (syst)
LHCb Average	-0.672 ± 0.034	-0.320 ± 0.038	0.405 (stat)
Average	-0.666 ± 0.029	-0.311 ± 0.030	0.288

Modernisation of webpage


- Webpage [link]
 - Static html
- Plan: create a more dynamic page
 - Most important results easy to find
 - Detailed information folded
 - Very much open to suggestions
- Example:
 - HFLAV B to Charm Averages webpage: [link]

HFLAV _Time-dependent CP violation & Unitarity Triangle angles

Results on Time-Dependent CP Violation and Measurements Related to the Angles of the Unitarity Triangle: Winter conferences (Moriond *etc.*) 2024

Overview

Summary plots and values for the latest world averages of the CKM Unitarity Triangle Angles.

Measurements related to the CKM angle $\beta = \varphi_1$:

§ Studies of b → ccs Transitions

- Time-Dependent CP Asymmetries (eq. B_d → I/ψ K₅) (sin2β ≡ sin2φ₁)
- Time-Dependent Transversity Analysis of B_d → J/ψK* (sin2β & cos2β = sin2φ₁ & cos2φ₁)

Current/old webpage

