Neutrino Masses from Cosmological Probes

- Background
- Neutrino masses from LSS and the CMB
- Joint teresstrial & Cosmology

Ofer Lahav University College London

The Chequered History of the Cosmological Constant A

Since Einstein conceive of the cosmological term almost 90 years ago, it has been repudiated, refashioned and regurnected. Here are some high lights.

FEB. 1917: Diservie iggodyznache carmobgical term тости вейтиет. becomissal model of a grant, Anima

MARCH 1917: Durch courselecter William de Sistemproduces an a bemantes model with a cosmological

The old problem:

Theory exceeds observational limits on Λ by 10^{120} !

New problems:

- Is Λ on the LHS or RHS?
- Why are the amounts of Dark Matter and Λ so similar?

$$R_{\mu\nu} - \frac{1}{2}R g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

But what is "Dark Energy"?

- Vacuum energy (cosmological constant)?
- Dynamical scalar field?

$$- w=p/\rho$$

- for cosmological constant: w = -1
- Manifestation of modified gravity?
- Inhomogeneous Universe?

- What if cosmological constant after al
- Multiverse Landscape?
- The Anthropic Principle?

WiggleZ + CMB + SN Ia

The Landscape of Large Surveys 2011-2020

(some exit, some under construction, some proposed)

Photometric surveys: DES, VISTA, Pan-STARRS, HSC, Skymapper, PAU, LSST, ...

Spetroscopic surveys: WiggleZ, BOSS, e-BOSS, BigBOSS, DESpec, HETDEX, Subaru/Sumire, VISTA/spec, SKA, ...

Space Missions: Euclid, WFIRST

Planck's whole sky Cosmic Microwave Background

First Cosmology results & data release expected in Jan 2013

The Dark Energy Survey

4 complementary techniques

Cluster Counts

Weak Lensing

Large Scale Structure

Supernovae Ia

• 8-band survey

 $5000 \deg^2 grizY + JHK from VHS$

300 million photometric redshifts +SPT SZ clusters

Survey 2012-2017

Blanco 4-meter at CTIO

EUCLID

ESA Cosmic Vision planned launch 2019

The key original ideas:
weak lensing from space
and photo-z from the ground
(DUNE) + spectroscopy (SPACE)

The new Euclid:

1B galaxy images + 50M spectra
(+ground based projects,
e.g. PS, DES, LSST,...)

Euclid Mapping the geometry

Massive Neutrinos and Cosmology

- Why bother? neutrino mass itself, effect on other parameters
- Limits on the total Neutrino mass from cosmology within ΛCDM
- Mixed Dark Matter?
- Non-linear power spectrum and biasing halo model and simulations
- Combined cosmological observations and laboratory experiments

Brief History of 'Hot Dark Matter'

- * 1970s : Top-down scenario with massive neutrinos (HDM) Zeldovich Pancakes
- * 1980s: HDM Problems with structure formation
- * 1990s: Mixed CDM (80%) + HDM (20%)
- * 2000s: Baryons (4%) + CDM (26%) +Lambda (70%):

But now we know HDM exists!

How much?

Neutrino Masses from Great Walls

Neutrinos decoupled when they were still relativistic, hence they wiped out structure on small scales

$$k > k_{nr} = 0.026 (m_v / 1 eV)^{1/2} \Omega_m^{1/2} h/Mpc$$

 $\Omega_v h^2 = M_v / (94 eV)$

Colombi, Dodelson, & Widrow 1995

CDM+HDM

WDM

CDM

Massive neutrinos mimic a smaller source term

$$\ddot{\delta} + 2\frac{\dot{a}}{a}\dot{\delta} = 4\pi G\rho_0(1 - f_\nu)\delta$$

Neutrino properties

The number of neutrino species N_{V} affects the expansion rate of the universe, hence BBN. BBN constraints N_{V} between 1.7 and 3 (95% CL) (e.g. Barger et al. 2003).

From CMB+LSS+SN Ia, $N_v = 4.2^{+1.2}_{-1.7}$ (95% CL) (Hannestad 2005)

We shall assume $N_v = 3$

Electron, muon and tau neutrinos Eigen states m₁, m₂, m₃ 112 neutrinos per cm³

$$\Omega_{\rm v} \, \mathsf{h}^2 = \mathsf{M}_{\rm v}/(94 \, \mathsf{eV})$$

Neutrino Mass Hierarchy

Absolute Masses of Neutrinos

Based on measured squared mass differences from solar and atmospheric oscillations

Assuming $m_1 < m_2 < m_3$

Elgaroy & OL, NJP 05

$$\frac{\Delta P(k)}{P(k)} = \frac{P(k; f_{\nu}) - P(k; f_{\nu} = 0)}{P(k; f_{\nu} = 0)}.$$

 $\Delta P(k)/P(k)$ = -8 Ω_{v}/Ω_{m}

Not valid on useful scales!

Kiakotou, Elgaroy, OL astro-ph 0709.0253, PRD

Neutrinos masses and the CMB

If
$$z_{nr} > z_{rec}$$
 \rightarrow $\Omega_v h^2 > 0.017$ (i.e. $M_v > 1.6 \text{ eV}$)

Then neutrinos behave like matter - this defines a critical value in CMB features

* Ichikawa et al. (2004) from WMAP1 alone $\rightarrow M_v < 2.0 \text{ eV}$

* Fukugita et al. (2006) from WMAP3 alone → M_V < 2.0 eV

Lensing of the CMB could help!

Neutrino Mass from Cosmology

Neutrinos decoupled when they were still relativistic, hence they wiped out structure on small scales

$$k > k_{nr} = 0.026 \ (m_{\nu}/1 \ eV)^{1/2} \ \Omega_{m}^{1/2} \ h/Mpc$$

$$\Omega_{\nu} \ h^{2} = M_{\nu}/(94 \ eV)$$

CDM+ 1.9 eV neutrinos

CDM

Agarwal & Feldman 2010

Neutrino mass from red vs blue SDSS galaxies

red

blue

all

upper limit in the range 0.5-1.1 eV

red and blue within 1-sigma

Swanson, Percival & Lahav (MN, 2010)

Neutrino mass from MegaZ-LRG

700,000 galaxies within 3.3 (Gpc/h)^3

 $0.05 < Total\ mass < 0.28\ eV\ (95\%\ CL)$

Thomas, Abdalla & Lahav (PRL, 2010) cf. Reid et al. (2010)

Combined Cosmology & Terrestrial Experiments

Fogli et al. Hep-ph/0408045

see also Hannestad 2007

Tritium beta decay

Nuclear recoil

$${}^{3}{\rm H} \rightarrow {}^{3}{\rm He}^{+} + {\rm e}^{-} + \bar{\nu}_{e}$$

The observable is the square of the effective electron neutrino mass

$$\frac{\mathrm{d}N}{\mathrm{d}E} \simeq C (E_0 - E) \sqrt{(E_0 - E)^2 - m_\beta^2}$$

Total Neutrino Mass DES+Planck vs. KATRIN M,< 0.1 eV M, < 0.6 eV

Lahav, Kiakotou, Abdalla and Blake (2010) 0910.4714

1) Null result

2) Discovery potential

- Assume $m_{\beta} = 0.35 \text{ eV}$
- ◆ 1000 posteriors
- Recover input regardless of analysis

Neutrinos - Summary

- Redshift surveys (+ CMB+...) $M_v < 0.3 \text{ eV}$
- Within the Λ -CDM scenarios, subject to priors.
- * Alternatives: MDM ruled out.
- * Future: sensitivity down to 0.05 eV using galaxy surveys+Planck, and weak gravitational lensing of background galaxies and of the CMB.
- * Combine with Lab experiments
 Resolve the three neutrino masses!